‘Chemical Dynamic’ Duo Aids Navy

By Nicole Hemsoth

April 1, 2005

A new research effort is addressing 21st century energy needs of the U.S. Navy in a thoroughly modern way – on the computer. The research to develop new computational capabilities ultimately will lead to more efficient electric power for ships and tougher, lighter-weight materials. It will also help the Navy use energy resources more efficiently.

The University of Minnesota and the Department of Energy's Pacific Northwest National Laboratory are conducting the research, which specifically seeks to better understand and predict the motion of molecules, or chemical dynamics, for the Office of Naval Research. This fundamental understanding is the basis for technology innovations that will create, manage and control energy in the Navy's all-electric ship, and control the design of new materials for future naval systems.

The solutions won't be found in a chemistry lab, but rather in a computer lab. The partners will take advantage of advances in molecular theories, computer algorithms, and computer power to develop a software suite. The suite will provide simulations and accurate calculations of chemical properties that can be applied to complex chemical systems to understand how the motions and reactions of molecules can be manipulated to control complex chemical processes.

The areas of particular emphasis in the project are electrochemistry and charge transport, which has particular relevance to battery design, heterogeneous catalysis, which is of particular importance for tailoring chemical transformations, and photochemistry, which offers new possibilities for controlling reaction pathways.

U of M brings four key strengths to this project. One is a history of developing software that can be used to tackle diverse problems. Another is the theoretical expertise to develop new algorithms for use in these programs, especially algorithms designed to take advantage of supercomputing capabilities. U of M also has the theoretical diversity of the participating faculty, whose research spans important sub areas of modern theoretical and computational chemistry, including structure, dynamics, and statistical mechanics. Finally, the university is the home to the Minnesota Supercomputing Institute, the leading academic supercomputing research program in the world, whose inception dates back 25 years to the first Cray computer. Minnesota Supercomputing Institute currently utilizes IBM supercomputers and SGI supercomputers based on Intel chips.

“As the complexity of scientific models increases, computational progress is often best advanced by the collaboration of individuals with widely differing backgrounds,” said U of M chemistry professor Donald Truhlar, the principal investigator for the project. “Combining our expertise with that of PNNL produces a team that should greatly advance our ability to predict the outcomes of chemical reactions and design processes that control chemical transformations more specifically than in the past. We will integrate our tools for this purpose into a software suite that can be used by scientists worldwide for fundamental advances in computer-based molecular design.”

“This is the first computationally-based contract award PNNL has received from ONR,” said Bruce Garrett, associate director for molecular interactions & transformations. “It highlights the strength of computational science at PNNL and we're excited at the opportunity it presents to significantly advance the state of the art in computational chemical dynamics.”

PNNL has extensive experience in simulations involving liquids and solids, or condensed-phase systems, including reaction kinetics and electron transfer processes, both of which include studying the speed of molecular and chemical processes. PNNL has also developed high performance chemistry software called NWChem that is publicly available and used by more than 1,000 government, industry and university users. Garrett notes all of this experience will be necessary in pursuing more in-depth research into chemical dynamics and, ultimately, in understanding how energy is used when deposited into a system. PNNL also houses the Molecular Sciences Computing Facility; its supercomputer is currently ranked among the top 20 fastest and most powerful in the world and is used by researchers from around the globe for running complex calculations.

U of M and PNNL will receive a combined total of $600,000 per year for the next three and a half years, with an option for an additional year and a half.

The Office of Naval Research coordinates, executes, and promotes the science and technology programs of the United States Navy and Marine Corps through schools, universities, government laboratories, and nonprofit and for-profit organizations. It provides technical advice to the Chief of Naval Operations and the Secretary of the Navy and works with industry to improve technology manufacturing processes.

The University of Minnesota was founded in 1851and is considered one of the most comprehensive public universities in the United States and ranks among the most prestigious. It is both the state land-grant university, with a strong tradition of education and public service, and the state's primary research university, with faculty of national and international reputation. The university's School of Chemistry and Supercomputing Institute were created in 1896 and 1984, respectively.

PNNL (www.pnl.gov) is a DOE Office of Science laboratory that solves complex problems in energy, national security, the environment and life sciences by advancing the understanding of physics, chemistry, biology and computation. PNNL employs 4,000 staff, has a $650 million annual budget, and has been managed by Ohio-based Battelle since the lab's inception in 1965.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire