Healing Light

By By Michael Schneider

September 1, 2005

Modeling of photonic crystals at NSF supercomputing centers, now partners in the TeraGrid, over several years has led the way to a major advance in laser surgery, exemplifying how computational simulations no longer take a back seat in driving scientific discovery.

In November 2004, a woman in North Carolina with potentially suffocating growths in her larynx and trachea had them removed by a high-power laser — and went home the same day. This condition had never before been treated without anesthesia and operating-room surgery. Six years earlier, physicists at MIT used supercomputers to learn something no one knew about mirrors.

These two seemingly separate events indeed are linked. A new laser technology, developed from a startling insight into the physics of light, may have saved the woman's life and, at the least, promises huge savings in the treatment of her disease — recurrent respiratory papillomatosis — one that affects tens of thousands of people in the United States alone.

It's a success, furthermore, that exemplifies how supercomputing is no longer merely a supporting character, but with increasing frequency plays a lead role in scientific discovery. In 1998, John Joannopoulos and his team of researchers at MIT discovered what has come to be called a “perfect mirror.” Their “eureka!” moment came not in the laboratory or with pencil and paper working out of mathematical theory; it happened because a computational model produced results no one expected.

For the past decade, Joannopoulos and his team have pushed forward new understanding of “photonic crystals” — fascinating materials, crafted from layers of silicon, which have unprecedented ability to trap, guide and control light. While he works closely with a laboratory team, headed by MIT professor Yoel Fink, to fabricate these challenging materials, a key to this work driving forward has been computational simulations that predict — successfully and precisely — how photonic crystals will work in advance of actually making them. “Computation,” said Joannopoulos, “has played a dominant role in the study of photonic crystals.”

The Perfect Mirror

It may be the most significant advance in mirror technology, said the New York Times, since Narcissus fell in love with his own image in a pool of water. The perfect mirror is so called because it reflects light at any angle with virtually no loss of energy. As a result, it makes possible a number of applications in optical technology, the most significant to date being flexible optical fiber that can transmit the high-powered CO2 lasers used in endoscopic surgery.

Until Joannopoulos' team's 1998 finding, reported with a paper in Science, mirrors were understood to come in two basic flavors, both with inherent limitations. Everyone who looks in the bathroom mirror for signs of life in the morning knows about metallic mirrors. They work all too well for seeing your own face, but they don't work to make optical fiber because a large portion of the light leaks away, absorbed by the metal, rather than reflected.

For optical fiber and other applications where energy loss matters, the choice has been mirrors made from dielectrics — materials that don't conduct electricity well. Dielectrics generally don't reflect light well either, but scientists have found ways to alternate thin dielectric layers of different reflective properties to achieve reflection without energy loss. The drawback has been that these dielectric mirrors reflect light only from certain angles, and their application depends on being able to use light at a limited range of angles and frequencies.

This limitation was thought to be a law of nature, like gravity – no way to get around it — until 1998, when Joannopoulos and company noticed anomalous results from a computational model of a photonic crystal mirror they were running at the San Diego Supercomputer Center. The light seemed to reflect at a much larger angle than was thought possible. “We saw some interesting results in the computation,” he said. “Then came the theory to explain the computation, and then came a real experiment making something like this and testing it.”

The result: a multi-layered dielectric mirror that reflects light from all angles without energy loss. Within a few years, the perfect mirror proved to be the solution for delivering a high-powered laser via flexible optical fiber.

Open Wide for a High-Power Laser

Fiber optics to transmit visible light, based on conventional dielectric mirror technology, has been around for years. These silica-based fibers have a light-carrying core with an index-of-refraction higher than the surrounding material. This layered approach traps light within the inner core — called “total internal reflection.” It works well for visible light, but high-power lasers — such as CO2 lasers used in endoscopic surgery — will melt conventional optical fiber.

Joannopoulos and Fink realized that the perfect mirror offered a potential solution for high-power transmission. With further computations and pioneering laboratory work, the team developed a hollow-core fiber — essentially a dielectric perfect mirror rolled up into a tube — designed in such a way, based on photonics, to transmit high-power lasers.

To take this idea beyond the laboratory into useful applications, in 2000, Joannopoulos and Fink helped form OmniGuide Communications, a company dedicated to developing and marketing the new hollow-core fiber. Further computations over the next few years — in San Diego, Illinois and Pittsburgh — explored other fundamental issues and phenomena of this new class of cylindrical photonic-crystal fiber.

In endoscopic surgery, the lack of a fiber for high-power transmission has meant that the laser had to be delivered to a patient via an apparatus with an articulated arm and large handpiece — which has precluded using these precise lasers for many minimally invasive procedures. For this reason, the surgery to treat RRP required dislocating the patient's jaw and general anesthesia, so that the laser could be brought close enough to the affected area.

A test case for OmniGuide's hollow-core fiber presented itself last year. In serious cases of RRP, the surgery often must be repeated to keep the breathing passage open. Dr. Jamie Koufman, director of the Center for Voice and Swallowing Disorders of Wake Forest University Baptist Medical Center, had a woman RRP patient who had undergone several previous RRP surgeries, but once again had developed near-total obstruction of the larynx and trachea.

Koufman obtained FDA approval to use the prototype fiber. She used a numbing topical spray in the throat and trachea, requiring no anesthesia, and with a CO2 laser delivered via an OmniGuide fiber cleared the RRP growths. The patient, who went home that day, is doing fine.

“Unsedated, laryngeal laser surgery with the OmniGuide fiber is a dream come true for me as an endoscopic surgeon,” said Koufman. “The patient loved it because it was easy for her.” Typical cost of RRP operating-room surgery with general anesthesia is $25,000. With expected FDA approval, the new procedure promises large cost savings nationally.

“These novel optical fibers, based on photonic crystals offer a new approach for medical lasers, making it possible to guide a CO2 laser beam, which can cut tissue with high precision, into a patient's body through a very small incision,” said Joannopoulos. “It will likely prove itself useful for many procedures.”

Computational science has come a long way over the past 20 years,” he added. “Even well known equations can have remarkable unexpected consequences that we would never learn about without these powerful computational engines, such as LeMieux (PSC's terascale system). This is just one advance that highlights how these machines are invaluable tools of discovery.”

Michael Schneider is a senior science writer at the Pittsburgh Supercomputing Center.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire