Taking the Earth’s Temperature

By By Trish Barker

October 7, 2005

It’s been found in salmon, polar bears and dolphins. It’s been found in the Great Lakes, the Arctic and the Mediterranean. It’s been found in apples, green beans, bread and ground beef. It’s been found in the bloodstreams of people worldwide.

It’s perfluorooctanoic acid (PFOA), a persistent, bioaccumulative compound that has come under scrutiny from the Environmental Protection Agency because of its as yet unknown potential for toxicity in human beings. The EPA issued a preliminary risk assessment regarding PFOA in 2003, but there are still more questions than answers about the chemical’s effects on human beings and how it has come to be so pervasive in the global environment.

In an attempt to answer some of those questions, University of Illinois atmospheric scientist Donald Wuebbles uses computing resources at NCSA to investigate the chain of events that leads to the presence of potentially toxic PFOA in the environment.

“Here’s this substance that’s found in nature,” Wuebbles said. “So the science question arises, “Where is this stuff coming from?”

Since the early 1950s, PFOA (C8HF15O2) has been used in the manufacture of fluoropolymers, fluorine-containing plastics that are components of non-stick cookware (such as DuPont’s Teflon), water-repellant fabrics, and other industrial products. Scientists have also theorized that PFOA can be formed as a result of the breakdown of fluorotelomer alcohols (FTOHs), chemicals that are widely used in fabrics and carpets (to provide stain resistance), in fast-food packaging (to help paper wrappers and cardboard boxes stand up to grease), and in some paints (to enhance dispersal). Millions of kilograms of fluorotelomer alcohols are produced around the world each year.

In recent years, PFOA has been observed in flora, fauna and human beings around the world, leading to concerns about potential health risks. Studies in rats and rabbits have demonstrated some adverse affects from PFOA exposure, ranging from reduced birth weights in offspring to enlarged kidneys and livers and even death. The results of studies of workers who have been exposed to PFOA are mixed, however, with no clear-cut picture of the chemical’s danger or safety yet emerging. What is clear is that PFOA and its chemical kin are not metabolized in the body and that they are bioaccumulative, meaning they hunker down in human and animal tissue and their levels continue to mount year after year.

Wuebbles set out to test the hypothesis that the PFOA observed in the environment is a by-product of the breakdown of these fluorotelomer alcohols and to explain why it is so widely observed. He decided to focus on 8:2 FTOH (C8F17CH2CH2OH) because of its importance in the $500 million annual fluorotelomer alcohol market.

The atmospheric oxidation mechanism for 8:2 FTOH, constructed from data in prior publications, was integrated into two atmospheric chemistry models: a two- dimensional model from the University of Illinois and the three-dimensional IMPACT model developed at Lawrence Livermore National Laboratories and the University of Michigan. These models calculate the chemistry of the breakdown of the initial compound and the physics that control how the resulting products are carried through the atmosphere.

Using estimates of the amount of 8:2 FTOH present in the atmosphere and factoring in locations where the chemical was being generated, Wuebbles ran calculations using both models on Copper, NCSA’s IBM p690 high-performance computing system. These simulations mapped the concentration and global dispersal of PFOA over time.

The simulation results showed molar yields of PFOA in the range of 1-to-10 percent, depending on the location and season. This yield corresponds well with what has actually been observed in nature. The distribution of PFOA shown by the simulations also correlated closely with environmental observations. In the simulation results, PFOA was ubiquitous in the Northern Hemisphere, as it is in reality.

Also correlating closely with real-world observations, the simulated concentration of PFOA was higher at locations far from its source, with the highest PFOA levels over the Atlantic and Pacific oceans, North Africa, and the Arctic during the summer. This somewhat counterintuitive result is explained by the fact that the reaction that forms PFOA competes with another reaction involving nitrogen oxides; larger concentrations of nitrogen oxides favor the competing reaction and result in less PFOA being formed. The sources of fluorotelomer alcohol emissions are also typically associated with high concentrations of nitrogen oxides, so less PFOA is formed close to the source of its parent compound, and more PFOA is formed farther away.

Wuebbles also noted how concentrations of PFOA in the simulation fluctuated throughout the year. In the Arctic, the PFOA concentration is high during the summer, falling by an order of magnitude during the winter. In fact, the simulation showed lower levels of PFOA during the winter throughout the Northern Hemisphere. This is due to the fact that photochemical activity slows during the winter months, creating a lull in the production of PFOA in the atmosphere.

Because the results of the simulation accorded so well with what has been observed in the environment, Wuebbles believes the study presents persuasive evidence that 8:2 FTOH degrades in the atmosphere to form PFOA and other perfluorocarboxylic acids and that these chemicals are then dispersed around the world.

Wuebbles said he would like to carry out finer-grained simulations to tease out in more detail the reactions and transport mechanisms that lead to the globally ubiquitous PFOA pollution. 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire