PITAC’s Look at Computational Science

By By Dan Reed

November 25, 2005

In June 2004, the President's Information Technology Advisory Committee (PITAC) was charged by John Marburger, the President's Science Advisory, to respond to seven questions regarding the state of computational science. Following over a year of hearings and deliberations, the committee released its report, entitled Computational Science: Ensuring America's Competitiveness, in June 2005. What follows are some of my personal perspectives on computational science, shaped by the committee experience. Any wild eyed, crazy ideas should be attributed to me, not to the committee.

Based on community input and extensive discussions, the PITAC computational science report included the following principal finding and recommendation.

Principal Finding

Computational science is now indispensable to the solution of complex problems in every sector, from traditional science and engineering domains to such key areas as national security, public health, and economic innovation. Advances in computing and connectivity make it possible to develop computational models and capture and analyze unprecedented amounts of experimental and observational data to address problems previously deemed intractable or beyond imagination. Yet, despite the great opportunities and needs, universities and the Federal government have not effectively recognized the strategic significance of computational science in either their organizational structures or their research and educational planning. These inadequacies compromise U.S. scientific leadership, economic competitiveness, and national security.

Succinctly, the principal finding highlights the emergence of computational science as the third pillar of scientific discovery, as a complement to theory and experiment. It also highlights the critical importance of computational science to innovation, security and scientific discovery, together with our failure to embrace computational science as a strategic, rather than a tactical capability. In many ways, computational science has been everyone's “second priority,” rather than the unifying capability it could be.

Principal Recommendation

Universities and the Federal government's R&D agencies must make coordinated, fundamental, structural changes that affirm the integral role of computational science in addressing the 21st century's most important problems, which are predominantly multidisciplinary, multi-agency, multisector, and collaborative. To initiate the required transformation, the Federal government, in partnership with academia and industry, must also create and execute a multi-decade roadmap directing coordinated advances in computational science and its applications in science and engineering disciplines.

The principal recommendation emphasizes the silos and stovepipes (choose your favorite analogy) that separate disciplinary domains within computational science. There was widespread consensus from both those who testified and those on the committee that solving many of the most important problems of the 21st century will require integration of skills from diverse groups. The group also felt deeply that current organizational structures in academia and government placed limits on interdisciplinary education and research.

Based on this recognition, the committee's principal recommendation was to create a long-term, regularly updated strategic roadmap of technologies (i.e., software, data management, architectures and systems, and programming and tools), application needs and their interplay. The long term, strategic aspect of this recommendation cannot be over-estimated. Many of our most important computational science challenges cannot be solved in 1-3 years. Nor is a series of three year plans the same as a 10-15 year plan.

Substantial, sustained investment, driven by multi-agency collaboration, is the only approach that will allow us to escape from our current technology quandary-high-performance computing systems that are based on fragile software and an excessive emphasis on peak performance, rather than sustained performance on important applications. Simply put, today's computational science ecosystem is unbalanced, with a software and hardware base that is inadequate to keep pace with and support evolving application needs. By starving research in enabling software and hardware, the imbalance forces researchers to build atop crumbling and inadequate foundations. The result is greatly diminished productivity for both researchers and computing systems.

Similarly, we must embrace the data explosion from large-scale instruments and ubiquitous, microscale sensors-the personal petabyte is in sight! Given the strategic significance of this scientific trove, the Federal government must provide long-term support for computational science community data repositories. HPC cannot remain synonymous with computing, but must be defined broadly to include distributed sensors and storage.

In the 19th and 20th centuries, proximity to transportation systems (navigable rivers, seaports, railheads, and airports) was critical to success. Cities grew and developed around such transportation systems, providing jobs and social services. In today's information economy, high-speed networking, data archives and computing systems play a similar role, connecting intellectual talent across geographic barriers via virtual organizations (VOs)-teams drawn from multiple organizations, with diverse skills and access to wide ranging resources, that can coordinate and leverage intellectual talent. Two examples serve to illustrate both the challenges and the opportunities that could accrue from visionary application of computational science.

Disaster Response

Hurricane Katrina drove home the centrality of VOs. In computational science terms, a rapid response VO would include integrated hurricane, storm surge, tornado spawning, environmental, transportation, communication and human dynamics models, together with the experts needed to analyze model outputs and shape public policy for evacuation, remediation and recovery. Computationally, solving such a complex problem requires real-time data fusion from wide arrays of distributed sensors, large and small; coupled, computational intense environmental models; and social behavior models. There are thousands of such 21st century problems, each awaiting application of computational science tools and techniques.

Systems Biology

The fusion of knowledge from genomics, protein structure, enzyme function and pathway and regulatory models to create systemic models of organelles, cells and organisms and their relation to the environment is one of the great biological challenges of the 21st century. By combining information from experiments, data gleaned from mining large-scale archives (e.g., genomic, proteomic, structural and other data), and large-scale biological simulations and computational models, we can gain insights into function and behavior-understanding life in a deep way. The time is near to mount a multidisciplinary effort to create artificial life, a computational counterpart to Craig Venter's minimal genome project. Such an effort would combine engineering, genomics, proteomics and systems biology expertise, with profound implications for medicine and deep insights into biology.

The computational science opportunities have never been greater. It is time to act with vision and sustained commitment.

The PITAC report on computational science can be downloaded from www.nitrd.gov. Paper copies of the report can be requested there as well.

This article originally appeared in CTWatch Quarterly, Volume 1, Number 4, November 2005. To view the entire issue visit http://www.ctwatch.org/quarterly/.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire