The Human Code

By Tim Green

February 3, 2006

In at least one battle between man and machine, the man is winning.

Kazushige Goto (photo Geno Esponda)He is Kazushige Goto, a research associate at the Texas Advanced Computing Center (TACC) at The University of Texas at Austin. Goto can make supercomputers run faster and more efficiently and he can do it better than complex programs developed for that purpose.

Four of the 11 fastest supercomputers in the world use Goto's code to benchmark their performance. Scientific and engineering research programs run as much as 50 percent faster using his code.

It was a coup for TACC when it lured Goto from his job as a patent examiner in the Japan Patent Office to work in Texas full time.

“He is a world-class resource, and TACC is extremely lucky and privileged to have him as a member of the technical staff,” Dr. Mark Seager of Lawrence Livermore National Laboratory said when Goto's TACC appointment was announced in August 2004.

What Goto does is considered esoteric by most standards, but in the world of high-performance computing it's hot stuff. So hot that he has become a legend in the supercomputing community.

Supercomputers, also called high performance computers, are those big machines that simulate the world in bits and bytes. They do things like help predict weather patterns and enable scientists and engineers to visualize models of experiments. In one case, a supercomputer beat the world's best chess player at his own game.

To do all this, the computers perform trillions of mathematical calculations per second and this is where Goto's expertise comes in.

He has developed methods for optimizing the way the chips that power the computers perform certain groups of calculations, called math kernels.

He painstakingly programs the chips to schedule the desired mathematical calculations in the most efficient order. That allows the computer to scoop up the results and keep crunching numbers without missing a beat.

Goto rearranges the order in which crucial algebraic functions are done to make them more efficient. These are basic linear algebra subroutines, called BLAS. The companies who design and build the computers generally provide their own BLAS software, but Goto's version, called GotoBLAS, is usually even better. He assembles his version into a portable BLAS library, which scientific programmers can use to make their applications run faster.

In fact, several high performance computing centers use his libraries to help their machines run faster for the Linpack benchmark, which determines the world's fastest computers.

It's like television networks running special programming during sweeps rating period to increase their ratings.

“Some (programs) are highly dependent on the performance of BLAS so those folks want the absolute fastest library available,” said Dr. Karl Schulz, a research associate at TACC.

The major benefit is that researchers can use Goto's BLAS without making any changes to their own application and reduce the overall execution time.

“In a production environment supporting as many users as we have at TACC, if we can save even a few percent on every run, that savings amortized over the life cycle of such a large machine provides a large number of compute cycles for other researchers,” Schulz said.

Goto's BLAS can increase the Linpack performance by several percent. In some scientific applications, performance increases as much as 50 percent.

Here's one way to look at what Goto does:

If Goto were in charge of speeding up highway traffic, he would schedule merging cars so they can get into traffic at the right time, without slowing down the other cars on the highway. The new cars would merge smoothly into traffic and it would continue to flow. Fewer backups, less congestion, faster travel.

What's more, the way he codes the chips would be like him directing cars onto the highway by standing on the on-ramp and using hand signals.

He starts with pencil and paper and then turns to computers to write the code that puts his plan into action.

“I write down the code on the paper and try to find the best way for the specific architecture,” he said.

It is a rigorous process. To optimize the chips, Goto writes 2,000-3,000 lines of code to replace a handful of lines.

Dr. Robert van de Geijn, a professor of computer sciences at The University of Texas at Austin, has worked with Goto. He said Goto combines a scientific understanding of the problem and an engineer's acumen in implementing his solution.

“On one hand, he had a key insight into how to restructure these kernels to inherently allow that to be done better and that's what I would call the scientific insight he had,” Van De Geijn said. “And then on the other hand, he's just very, very good at looking at the machine instructions for a particular processor and figuring out instructions just so that the machine really hums. That's more the engineering side of it.”

He's been instrumental in finding some hardware inefficiencies in new architectures using his library and TACC has talked to a hardware vendor who wants to use his library because it exposes specific processor problems.

“It's an interesting byproduct of him understanding what the hardware is doing to such a degree that he can find problems that other people can't,” Schulz said.

Goto started working on the optimization problem about 10 years ago as a hobby. He worked on it during his train rides to and from work at the patent office in Tokyo.

It was a hobby that had the makings of an obsession.

Goto, his wife, Natsumi, and young son, Hibiki, now 3, shared their tiny apartment with nine large computers.

“I never turned on everything at once,” he said, “because it would become dark due to power failure.”

He worked six years to crack the code on the Alpha chip, made by Digital Equipment Corp., now a part of Hewlett-Packard Co.

Today at TACC, he has eight workstations—all plugged in and humming—under his desk.

“I'm pretty happy during winter, but it's horrible in summer,” Goto said.

Goto shared his work by posting it on the Web and had started to become known in the supercomputing world.

After conquering the Alpha, he wanted to see if he could extend his method to other chips. He thought it was an opportunity to use a sabbatical offered by the patent office to help its examiners keep up with current technology and improve their English.

Goto's e-mail seeking a place to take his sabbatical arrived in the inbox of van de Geijn, who studies linear algebra libraries.

“On a hunch, I decided to check him out with people I knew in industry,” van de Geijn said, “and it came back that he really was quite an artist at this particular problem.”

Ensconced at the university's Computer Sciences Department, Goto delved into the Pentium 4 chip from Intel Corp. and the Itanium chip, a joint effort by Intel and Hewlett-Packard.

“Within a month or so he had managed to squeeze out an extra 10 percent performance,” van de Geijn said. “He took the insight he had had on one machine and generalized it to every current microprocessor out there and therefore really demonstrated the superiority of his fundamental insight.”

Van de Geijn said Goto's sabbatical year might be considered the equivalent of Ph.D. work.

“What he demonstrated while he was here for that year was exactly what we would expect from a Ph.D. student, which is you identify an interesting problem, you come up with an innovative solution to it and you demonstrate the benefit of that in whatever way you can,” Van de Geijn said. “And he certainly went through all of those steps during that year. Now he didn't get a piece of paper at the end of the year giving him a Ph.D., but he certainly established himself as the foremost authority in his field, which, in my mind, is worth a lot more.”

When the sabbatical was up on June 30, 2003, Goto returned to the patent office in Japan. But van de Geijn and others at the university sought to bring him back.

“The sabbatical was successful, but by no means is one year enough to do 'everything' there is to do in high performance linear algebra,” said Dr. Jay Boisseau, director of TACC. “We want him at TACC to pursue many further developments in this important area, which is a 'foundation' for many real-world high performance computing applications.”

After 18 months of negotiating and coaxing, Goto accepted the research job at TACC.

Van de Geijn said the move to Texas was a leap for Goto. He left a respected and secure job in Japan for something much different in another country.

“Patent examiner is a very secure job and I can work until retirement age if I wish,” Goto said. “Yes, my action is really risky, but I just wanted to try the new job.”

Now that his former hobby is his full-time job, Goto has another problem to solve.

“I have to find a new hobby,” he said.

This article was provided courtesy of The University of Texas at Austin.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Research senior analyst Steve Conway, who closely tracks HPC, AI, Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, and this day of contemplation is meant to provide all of us Read more…

Intel Announces Hala Point – World’s Largest Neuromorphic System for Sustainable AI

April 22, 2024

As we find ourselves on the brink of a technological revolution, the need for efficient and sustainable computing solutions has never been more critical.  A computer system that can mimic the way humans process and s Read more…

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Resear Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire