Predicting Strokes With HPC

By Nicole Hemsoth

May 12, 2006

A professor at the University of Houston and his research students are working with physicians and scientists at the Methodist Neurological Institute on new technology to help identify which brain aneurysms are at highest risk of rupture and could cause a stroke.

Improving treatment of cerebral aneurysms, which are ballooning weak spots in the wall of a blood vessel in the brain, is at the center of this joint research. The goal of their study is to develop a fully-integrated computational medical tool that will be useful in helping to select patients for treatment whose aneurysms are most likely to rupture.

Ralph Metcalfe, a mechanical engineering professor at UH and deputy director of the UH biomedical engineering program and his graduate student, Aishwarya Mantha, work on this project with a Methodist team consisting of Drs. Charles Strother and Goetz Benndorf, interventional neuroradiologists, and Christof Karmonik, a researcher at the Methodist Hospital Research Institute.

Using computer simulations of blood flow in realistic geometric models of aneurysms, some blood flow characteristics have been identified that may contribute to aneurysm formation. These findings are described in a paper titled “Hemodynamics in a Cerebral Artery Before and After the Formation of an Aneurysm,” appearing in the May issue of the American Journal of Neuroradiology, a scientific journal that publishes original articles dealing with the clinical imaging, endovascular therapy and basic science of the central and peripheral nervous system.

“According to the American Association of Neurological Surgeons, cerebral aneurysms affect up to six percent of the U.S. adult population,” Metcalfe said. “Most aneurysms don't rupture, but if they do, the results are fatal in about 50 percent of the cases. The question is how to predict who is most at risk.”

Since treatment of aneurysms is associated with some risk, Metcalfe's group and his Methodist colleagues are trying to develop a better method of identifying which aneurysms are most vulnerable for rupture. Once these patients are identified, physicians can then determine the best course of medical treatment, using existing technologies and best medical practices.

“One of the key points is that aneurysms don't seem to form randomly,” Metcalfe said. “They do seem to form at locations that are associated with the fluctuations in the flow of blood, leading to the question of what it is about the flow of blood that tends to correlate with the formation of aneurysms.”

The Methodist researchers acquire 3-D images of the intracranial vascular system by injecting dye into the vessels and rotating an X-ray tube around the patient's head, a technique that has become a standard for high-quality vascular imaging in this institution.

By using this geometric and blood flow data taken from a specific patient's clinical profile, Metcalfe's team can perform simulations in their computers of blood flow in that patient's arteries using existing computational fluid dynamics programs in novel applications. This is similar to the way that an aeronautical engineer would study the design of an airplane on a computer or in a wind tunnel. Strother and his colleagues at Methodist anticipate that this process will help researchers better understand how aneurysms form and ultimately discover ways to prevent strokes and death from this common disorder.

“We can't look at a person and tell the likelihood that an aneurysm will rupture,” Strother said. “But we do know that force and stresses created by blood flow produces aneurysms. Our hope is that this study will help us learn enough to predict which ones are at high risk of rupture so that treatment can be offered before they become harmful.”

This work has two potential applications. The first is as a research tool, with Metcalfe's team performing simulations of specific aneurysms. Using a technique employed by Karmonik to simulate removal of an aneurysm on the computer, they analyze how the blood behaves as it flows near the aneurysm site and determine if that can be correlated to a certain type of behavior of the blood at potential sites where aneurysms form. Very accurate simulations are done for a complete description of the flow fields, studying all the fluid dynamic variables in great detail, such as the wall shear stresses, the pressures and the velocity.

“The second application is as a potential clinical tool,” Metcalfe said. “Once we have a reasonable idea of the fluid dynamic variables needed to study and identify a potential problem, we then use a program that provides a detailed, 3-D description of the aneurysms of the real patients.”

Benndorf adds that the potential clinical importance of these computer simulations lies in the future possibility of directly predicting patient-specific blood flow so that patient-specific medical devices can be used in aneurysm treatment. He is studying how stents – small wire mesh tubes that are inserted into the artery to facilitate the occlusion of an aneurysm with small platinum coils – can be tailored to the patient's individual anatomy and blood flow in order to optimize their therapeutic effect and maximize the possibility of a successful outcome.

When Metcalfe's group imports a patient's images into a computer program, they remove some geometric glitches and generate a computational mesh that involves the mapping of hundreds of thousands of tiny elements that represent the area being studied. That mesh is then introduced into a program that actually solves the fluid dynamic equations of motion.

“It takes a lot of computer time to perform these simulations,” Metcalfe said. “There are several hundred thousand elements that are discrete zones within a geometric mesh, and then there are 700 steps representing intervals of time over the cycle of each heart beat.”

Requiring extremely fast computers, the group uses the Beowolf cluster at UH's Texas Learning and Computation Center (TLC2) to significantly improve the visualizations created by the simulations.

“The critical step here is to make these complicated flows much more accessible to people like medical researchers and physicians,” Metcalfe said. “We're developing 3-D visualizations so doctors can go inside the virtual artery and actually see what's happening as the blood cells flow through.”

Halliburton Company supports this joint project by funding the research analysis of the study's findings, which have the potential for substantial impact in neurology and medical science.

—–

Source: University of Houston

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pressing needs and hurdles to widespread AI adoption. The sudde Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire