Researchers Analyze HPC Potential of Cell Processor

May 26, 2006

Though it was designed as the heart of the upcoming Sony PlayStation3 game console, the STI Cell processor has created quite a stir in the computational science community, where the processor’s potential as a building block for high performance computers has been widely discussed and speculated upon.

To evaluate Cell’s potential, computer scientists at the U.S. Department of Energy’s Lawrence Berkeley National Laboratory evaluated the processor’s performance in running several scientific application kernels, then compared this performance against other processor architectures. The results of the group’s evaluation were presented in a paper at the ACM International Conference on Computing Frontiers, held May 2-6, 2006, in Ischia, Italy.

The paper, “The Potential of the Cell Processor for Scientific Computing,” was written by Samuel Williams, Leonid Oliker, Parry Husbands, Shoaib Kamil and Katherine Yelick, of Berkeley Lab’s Future Technologies Group and by John Shalf from NERSC.

“Overall results demonstrate the tremendous potential of the Cell architecture for scientific computations in terms of both raw performance and power efficiency,” the authors wrote in their paper. “We also conclude that Cell’s heterogeneous multi-core implementation is inherently better suited to the HPC environment than homogeneous commodity multi-core processors.”

Cell, designed by a partnership of Sony, Toshiba, and IBM Cell, is a high performance implementation of software-controlled memory hierarchy in conjunction with the considerable floating point resources that are required for demanding numerical algorithms. Cell takes a radical departure from conventional multiprocessor or multi-core architectures. Instead of using identical cooperating commodity processors, it uses a conventional high performance PowerPC core that controls eight simple SIMD (single instruction, multiple data) cores, called synergistic processing elements (SPEs), where each SPE contains a synergistic processing unit (SPU), a local memory, and a memory flow controller.

Despite its radical departure from mainstream general-purpose processor design, Cell is particularly compelling because it will be produced at such high volumes that it will be cost-competitive with commodity CPUs. At the same time, the slowing pace of commodity microprocessor clock rates and increasing chip power demands have become a concern to computational scientists, encouraging the community to consider alternatives like STI Cell. The authors examined the potential of using the forthcoming STI Cell processor as a building block for future high-end parallel systems by investigating performance across several key scientific computing kernels: dense matrix multiply, sparse matrix vector multiply, stencil computations on regular grids, as well as 1D and 2D fast Fourier transformations.”

According to the authors, the current implementation of Cell is most often noted for its extremely high performance single-precision (32-bit) floating performance, but  the majority of scientific applications require double precision (64-bit). Although Cell’s peak double precision performance is still impressive relative to its commodity peers (eight SPEs at 3.2GHz = 14.6 Gflop/s), the group quantified how modest hardware changes, which they named Cell+, could improve double precision performance.

The authors developed a performance model for Cell and used it to show direct comparisons of Cell against the AMD Opteron, Intel Itanium2 and Cray X1 architectures.  The performance model was then used to guide implementation development that was run on IBM’s Full System Simulator in order to provide even more accurate performance estimates.

The authors argue that Cell’s three-level memory architecture, which decouples main memory accesses from computation and is explicitly managed by the software, provides several advantages over mainstream cache-based architectures. First, performance is more predictable, because the load time from an SPE’s local store is constant. Second, long block transfers from off-chip DRAM can achieve a much higher percentage of memory bandwidth than individual cache-line loads. Finally, for predictable memory access patterns, communication and computation can be effectively overlapped by careful scheduling in software.

“Overall results demonstrate the tremendous potential of the Cell architecture for scientific computations in terms of both raw performance and power efficiency,” the authors wrote. While their current analysis uses hand-optimized code on a set of small scientific kernels, the results are striking.  On average, Cell is eight times faster and at least eight times more power efficient than current Opteron and Itanium processors, despite the fact that Cell’s peak double precision performance is fourteen times slower than its peak single precision performance.  If Cell were to include at least one fully utilizable pipelined double precision floating point unit, as proposed in their Cell+ implementation, these speedups would easily double.

The full paper can be read at: http://www.cs.berkeley.edu/~samw/projects/cell/CF06.pdf.

The paper was written primarily by members of LBNL’s Future Technologies Group, part of Berkeley Lab’s Computational Research Division (http://crd.lbl.gov/), which creates computational tools and techniques that enable scientific breakthroughs, by conducting applied research and development in computer science, computational science, and applied mathematics.

—–

Source: Lawrence Berkeley National Laboratory

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pressing needs and hurdles to widespread AI adoption. The sudde Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire