The Next Generation of Climate Models

By Per Nyberg

July 21, 2006

Few areas of scientific research today are as important, or provoke as visceral a response as global warming. Climate scientists around the world agree that the average global temperature could rise by 1.4 to 5.8 degrees Celsius by the end of the century. And scientists — as well as government leaders, economists, and increasingly, the public at large — recognize that warming could bring about far-reaching and unpredictable environmental, social, and economic consequences.

To address these concerns, global leaders and policymakers need comprehensive, objective information on the global climate system, and the role of human activity in climate change. In 1988, the World Meteorological Organization (WMO) and the United Nations Environment Programme (UNEP) established the Intergovernmental Panel on Climate Change (IPCC) to scientifically assess and understand the global risk of human-induced climate change, its potential impact, and options for mitigation.

The Department of Energy (DOE)'s Oak Ridge National Laboratory (ORNL) has played a key role in the IPCC's fourth assessment, due in 2007. In fact, one third of the climate simulation work in the United States has been done at ORNL. These simulations, which span 11,000 years, look at climate as a function of atmospheric carbon dioxide and other greenhouse gases. Among other things, the results confirm that smaller concentrations of these gases result in less global warming.

However, IPCC scientists are continually seeking to refine their models to incorporate more atmospheric, oceanic and other processes, and to produce more accurate, higher-resolution simulations. For example, researchers now are working to incorporate dynamic ecological and chemical processes into their simulations. In preparation for the fifth IPCC assessment due in 2013, the DOE and the National Science Foundation's National Center for Atmospheric Research (NCAR) have designated a Climate Science Computational End Station at ORNL. With millions of hours of dedicated access to some of the largest, most advanced high-performance computing (HPC) systems in the world, IPCC researchers will be able to apply greater computational resources to climate problems than ever before, and develop the next generation of climate system simulations.

Understanding Climate Modeling

To prepare for the fifth IPCC assessment, a team led by NCAR researchers in Boulder, Colorado is refining the current leading climate model, called the Community Climate System Model, or CCSM. (While NCAR is leading the CCSM project, the model, as well as the larger IPCC effort, is a culmination of contributions from institutions across the country, including  six DOE National Laboratories, the National Aeronautics and Space Administration,  and a host of universities.)

CCSM is a “coupled” climate model, meaning that it integrates various component models (ocean simulations, atmospheric simulations, ice sheet modeling, etc.) into a unified picture of the Earth's climate system. To produce this unified view, the simulation must be designed so that each component model can influence and be influenced by other component models in the system. (For example, ocean models must be coupled with atmospheric models, because increases in sea surface temperature have an impact on tropical storms and El Niño events.)

Obviously, the computational requirements to perform such simulations can quickly become substantial. After all, accurately modeling atmospheric processes alone can require HPC runs of several days. Running multiple simulations simultaneously, so that the model can incorporate the ways in which component simulations impact one another over time, is an even more resource-intensive ordeal. Additionally, the model must simulate climate processes over several decades.

“The heart of CCSM is weather modeling,” says ORNL's John Drake, chief computational scientist for the End Station effort. “But whereas the weather guys give up on their models after 15 days, we plow ahead for 100 years, and then take statistical averages. The statistical properties of that solution, linked with a variety of other processes, produces what we call climate.”

Building a Better Model

Previous versions of CCSM provided a great deal of useful information. However, there were gaps in the simulations, and researchers believed many areas of the model could be improved upon with higher-resolution modeling, and by incorporating factors that had previously been omitted. In preparation for the next IPCC assessment, the research team is looking to incorporate a number of new scientific questions into CCSM.

For example, previous models had done an excellent job of simulating physical atmospheric processes, but had not incorporated some of the relevant chemical processes. The CCSM development team is now working to integrate atmospheric chemistry, including fully interactive aerosol processes, into the next simulation. Researchers also are working to incorporate biogeochemical cycles in the global climate system (such as the effect of carbon dioxide produced by phytoplankton), as well as higher-resolution glacial ice sheet processes. The new model also will gauge how dynamic vegetation processes on land affect atmospheric carbon dioxide levels. (Even though land covering is fixed when modeling short-term weather patterns, the desertification of a region over decades or centuries can have a more significant impact.)

The IPCC team also would like to incorporate much higher-resolution ocean modeling. Most current ocean models resolve to one degree. However, much of the heat transported through the oceans moves in the form of eddies, which a coarse resolution simply cannot resolve. So previous models relied on parameterization of these processes.

In addition to the problem of modeling these new processes, the team is working to improve on the original physical models themselves. This work is necessary because, as CCSM extends to incorporate new dynamic processes, the accuracy of physical process simulations becomes increasingly important. For example, past simulations were not very accurate in accounting for the specific distribution of precipitation. In past climate simulations, this was not a crucial problem, as long as the overall results for large regions (or for the global system) were correct. However, to incorporate processes such as changing vegetation, a more accurate picture of precipitation is crucial.

Ultimately, the IPCC team believes that all of this work will produce a more useful, accurate climate model. “We expect that, when the next climate model is released, we'll have options for essentially full atmospheric chemistry, dynamic vegetation processes on the land, ocean ecosystems, and more,” says Drake. “By pulling all of these processes together, we'll be able to create not only a physically coupled model, but a chemically coupled and biologically coupled climate model. That's a big stretch over where we are now.”

Climate System

Bringing Leadership-Class Computing to Climate Modeling

Incorporating higher-resolution physical processes, as well as complex chemical and biological processes, demands an enormous amount of computing resources. The Climate Science End Station at ORNL, led by chief scientist Warren Washington of NCAR, provides dedicated access to a National Leadership Computing Facility (NLCF), and allows IPCC research teams in a variety of climate disciplines to collaborate and take advantage of a common infrastructure. 

At ORNL, climate researchers have access to both Cray XT3 and Cray X1E supercomputers. With thousands of processors, extremely fast interconnects, ample bandwidth to memory, and sophisticated memory hierarchies, these systems bring unprecedented performance and scalability to the team's climate simulations.

For example, the computations involved in modeling physical, ocean and atmospheric systems translate into partial differential equations (PDEs). These equations are ideally suited for vectorization — and as a result, for processing on ORNL's Cray X1E system. In fact, some models that used to run at four simulated years per day on the team's previous systems run at 20 years per day on the Cray X1E supercomputer.

ORNL's Cray XT3 system also supports much higher-resolution simulations. Adding atmospheric chemistry processes to previous physical atmospheric models, for example, increases the required computation for each gridpoint by a factor of six to 10. Only a massively parallel system with an extremely fast interconnect can provide the scalability to perform these calculations for century-long simulations in a reasonable amount of time. The Cray XT3 system also allows the IPCC team to perform one-tenth degree ocean simulations running on 2,000 processors — providing 70 times higher resolution than previous models. This fine resolution eliminates the need to parameterize the effect of ocean eddies by actually incorporating the physical processes into the model for the first time.

Without an extremely fast interconnect and exceptional bandwidth to and from memory, these advanced simulations would simply not be possible.

“It's never been about just the number of processors for us,” says Drake. “These kinds of multi-physics, hard PDE systems never look like Linpack benchmarks. Whereas theoretically you can get higher peak ratings just by adding more processors, we have to pay a lot of attention to the bandwidth, to the various network latencies, to the memory hierarchies, and so forth. The systems that have very fast memory access and good interconnects are the ones that pay off for us, and these systems have some of the fastest interconnects around. We can't even compare running our applications on some commodity system with the level of scalability and performance we have here.”

Evolving Tomorrow's Climate Models

Constituents around the globe are anxiously awaiting future IPCC assessments — and the new information that will be provided by higher-resolution, more comprehensive climate simulations. Ultimately, the leadership-class computing resources at ORNL are allowing IPCC researchers to not only produce better simulations by scaling their models to thousands of processors, but to run their simulations much faster. This speed advantage translates directly into more runs — and more refinement of IPCC climate models — than would be possible with smaller-scale computing resources.

“We will figure out how to use almost any level of computation we have available, but given that our horizon has expanded rather significantly with access to the ORNL computing facility, we're thinking much bigger,” says Drake. “We're thinking that we can use a much higher resolution and reduce some of the uncertainties associated with parameterization. We're thinking we can add a variety of processes, such as atmospheric chemistry, that are computationally very expensive. If we did not have this level of computational capability, we couldn't even try these things. We wouldn't even be able to consider them.”

—–

Per Nyberg is the marketing director for the Earth Sciences Segment at Cray Inc. Since joining the company in 2002, Mr. Nyberg has been responsible for Cray's worldwide strategic planning, business development and marketing for the earth sciences segment working extensively with many weather and climate centers worldwide. Prior to joining Cray, he worked for 12 years in NEC Corp's high performance computing business in Canada, United States and Australia, focused on earth sciences in roles ranging from software engineering to business development. He received a Bachelor of Computer Science from Concordia University in Montreal, Canada, in 1991.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Mystery Solved: Intel’s Former HPC Chief Now Running Software Engineering Group 

April 15, 2024

Last year, Jeff McVeigh, Intel's readily available leader of the high-performance computing group, suddenly went silent, with no interviews granted or appearances at press conferences.  It led to questions -- what's Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Institute for Human-Centered AI (HAI) put out a yearly report to t Read more…

Crossing the Quantum Threshold: The Path to 10,000 Qubits

April 15, 2024

Editor’s Note: Why do qubit count and quality matter? What’s the difference between physical qubits and logical qubits? Quantum computer vendors toss these terms and numbers around as indicators of the strengths of t Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips are available off the shelf, a concern raised at many recent Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announced its second fund targeting €200 million. The very idea th Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. In a way, Nvidia is the new Intel IDF, the hottest chip show Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Computational Chemistry Needs To Be Sustainable, Too

April 8, 2024

A diverse group of computational chemists is encouraging the research community to embrace a sustainable software ecosystem. That's the message behind a recent Read more…

Hyperion Research: Eleven HPC Predictions for 2024

April 4, 2024

HPCwire is happy to announce a new series with Hyperion Research  - a fact-based market research firm focusing on the HPC market. In addition to providing mark Read more…

Google Making Major Changes in AI Operations to Pull in Cash from Gemini

April 4, 2024

Over the last week, Google has made some under-the-radar changes, including appointing a new leader for AI development, which suggests the company is taking its Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

Leading Solution Providers

Contributors

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire