NASA’s Columbia Supercomputer Tackles Einstein’s Equations

By Nicole Hemsoth

July 28, 2006

For 90 years, physicists have tried to solve the equations that constitute Albert Einstein's theory of general relativity — the concept that matter, space and time are intertwined. But some of Einstein's abstract equations have proven too complicated to reliably calculate using traditional computer software and hardware.
 
Until now, that is. Thanks to the ingenuity of NASA scientists and computer technology from Silicon Graphics, Inc., that list of incalculable problems is growing shorter.

Recently, physicists at NASA Goddard Space Flight Center successfully simulated the merger of two massive, orbiting black holes — an achievement that has eluded physicists for decades. Relying on Columbia, NASA's record — setting supercomputer built from 20 SGI Altix systems, the Goddard team was able to simulate how colliding black holes will throw off gravitational waves that ripple throughout the fabric of the universe.

Variations on 24 equations based on Einstein's relativity theory helped create the simulation of colliding black holes with equal mass — an event whose effects can continue for years. The black hole calculation stands out as the largest astrophysical “single run” ever performed on a NASA computer — the equivalent of 18 years of CPU time devoted to a single problem.

“These mergers are by far the most powerful events occurring in the universe, with each one generating more energy than all of the stars in the universe combined,” said Joan Centrella, head of the Gravitational Astrophysics Laboratory at Goddard. “By combining our latest codes with the tremendous computing power of Columbia, we now have realistic simulations that will help guide gravitational wave detectors coming online.”

To run the simulations on Columbia, Goddard physicists developed sophisticated software called Hahndol, an English representation of the Korean word for “one stone” — or in German, “ein stein.”

The Goddard team scaled its Hahndol code across up to 2,032 processors on Columbia — one-fifth of the system's total processor count. By linking four, 512-processor Altix systems via the high-speed SGI NUMAlink interconnect, NASA enabled the scientists to access all of the processors' memory at once. The project, begun some 18 months ago, has required millions of CPU hours. Individual calculations involved hundreds of gigabytes of information.

According to John Baker, NASA astrophysicist and one of the project leaders at NASA Goddard, calculating some of Einstein's more involved equations had proven elusive because representing the three-dimensional fabric of the universe is enormously complex, and simulating its behaviors grows increasingly complicated. Previous calculations relying on software that was less sophisticated than Hahndol would, before long, render results that were obviously inaccurate.

“You can picture the simulation taking place on a kind of 3D graph paper with hundreds of points, and we'll calculate 80 variables for each point,” said Baker. “If the coordinates aren't accurate, things go awry very quickly.”

NASA pursued the simulations because gravitational waves are notoriously difficult to detect and measure. By successfully simulating the waves, the Goddard researchers are assisting another NASA project: the Laser Interferometer Space Antenna (LISA). Made up of three spacecraft flying just more than 3 million miles apart in an equilateral triangle, the LISA project will carry extraordinarily precise instruments to track one another and — more importantly — to detect if a gravitational wave passes between them. The sensitive instruments will recognize even the slightest force caused by a passing wave. For instance, if the laser that connects two LISA spacecraft is nudged as little as the width of an atom, the system will detect it.

The long-term project should help NASA scientists learn more about how black holes merge and how dying stars are consumed by black holes.

In the simulation created jointly by NASA Goddard and scientists at NASA Ames Research Center, the black holes seen merging are roughly 4 million times the mass of the sun. An animation of the simulation, created by Chris Henze, senior research scientist at NASA Advanced Supercomputing Division, can be viewed at http://www.nasa.gov/centers/goddard/universe/gwave.html. The 29-second animation of circling black holes illustrates the final stage of a rapidly accelerating process. Though the entire merger process occurs over hundreds of millions of years, the last stage is over in only minutes.

“The work of the Goddard scientists is significant,” said Henze, who rendered the simulation that was computed on Columbia across 10 nodes of one of NASA Ames' two HyperWall displays. “These are very difficult problems. People have been working on them for decades.”

One of the world's most powerful computers, the Columbia supercomputer is built from 20 SGI Altix systems, each powered by 512 Intel Itanium 2 processors, and has revolutionized the rate of scientific discovery at NASA. For instance, on NASA's previous supercomputers, simulations showing five years worth of changes in ocean temperatures and sea levels were taking a year to model. But using a single SGI Altix system, scientists can simulate decades of ocean circulation in just days, while producing simulations in greater detail than ever before. And the time required to assess flight characteristics of an aircraft design, which involves thousands of complex calculations, dropped from years to a single day.

Recently, NASA added 600 TB of SGI InfiniteStorage 6700 storage capacity to the 10,240-processor Columbia system, and acquired a new 4 Gbit infrastructure to optimize data management with SGI InfiniteStorage Shared Filesystem CXFS. Originally outfitted with 440 TB of storage, NASA's Columbia supercomputer required additional storage capacity to accommodate the massive data management, access and retrieval demands of its broad user base.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire