High Performance Wireless Network Aids Astronomers

By Nicole Hemsoth

August 18, 2006

Combining computer and communications skills, experts at the University of California San Diego are helping colleagues at the California Institute of Technology share the massive amounts of data produced by astronomers' investigations of the cosmos.

For the past three years, astronomers at the California Institute of Technology's Palomar Observatory in Southern California have been using the High Performance Wireless Research and Education Network (HPWREN) as the data transfer cyberinfrastructure to further our understanding of the universe.

HPWREN is staffed by researchers at UC San Diego's San Diego Supercomputer Center (SDSC), Scripps Institution of Oceanography (SIO), and San Diego State University (SDSU).

Recent applications include the study of some of the most cataclysmic explosions in the universe, the hunt for extrasolar planets, and the discovery of our solar system's tenth planet. The data for all this research is transferred via HPWREN from the remote mountain observatory to college campuses hundreds of miles away.

Funded by the National Science Foundation, HPWREN provides Palomar Observatory with a high-speed network connection that helps enable new ways of undertaking astronomy research consistent with the data demands of today's scientists. Specifically, the HPWREN bandwidth allows astronomers to transfer a 100 MB image from a telescope camera at Palomar to their campus laboratories in less than 30 seconds.

“The Palomar Observatory is by far our most bandwidth-demanding partner,” says Hans-Werner Braun, HPWREN principal investigator, a research scientist with the San Diego Supercomputer Center at UC San Diego. “Palomar is able to run the 45 megabits-per-second HPWREN backbone flat out and will be able to utilize substantially more bandwidth in the future. The current plan is to upgrade critical links that support the observatory to 155 Mbps and create a redundant 45 Mbps path for a combined 200 megabits-per-second access speed at the observatory.”

Last summer astronomers making use of the Palomar 48-inch Samuel Oschin Telescope announced the discovery of what some are calling our solar system's tenth planet. The object has been confirmed to be larger than Pluto. The telescope uses a 161-million-pixel camera — one of the largest and most capable in the world. HPWREN enables a large volume of data to be moved off the mountain to each astronomer's home base. Modern digital technology with pipeline processing of the data produced enables astronomers to detect very faint moving and transient objects.

To find these objects, the telescope takes a relatively short exposure of a section of the sky. It then goes off and images a pre-arranged sequence of such target fields. After a period of time it comes back and repeats the sequence. Then it does it again after another interval. Any objects that are visible in all three images, but move consistently with respect to the background star field, are solar system objects such as asteroids, comets or Kuiper Belt objects. Because of the large amount of data, pipeline processing is used both to detect such objects and to calculate their preliminary orbits from the initial triplet data. Sedna and the tenth planet, 2003UB313, were found using this technique, as were a large number of Near Earth Asteroids, by the Jet Propulsion Laboratory's Near-Earth Asteroid Tracking (NEAT) program.

The Nearby Supernova Factory piggybacks their hunt for a certain type of exploding star, known as Type Ia supernovae, with the data collected by the NEAT program, and they then use the observations of these supernovae as “standard candles” for measuring the accelerating expansion of the universe. To date the survey has discovered about 350 supernovae, including 90 Type Ia supernovae.

Greg Aldering of the University of California's Lawrence Berkeley Laboratory says “The recent discovery that the expansion of the universe is speeding up has turned the fields of cosmology and fundamental physics on their heads. The QUEST camera and the speedy HPWREN link are giving us an unprecedented sample of supernovae for pursuing this exciting discovery. The Palomar supernovae will be compared with supernovae from the Hubble Space Telescope and other telescopes to try to determine what is causing this acceleration.”

One of the universe's most mysterious and explosive events is the phenomenon known as a gamma-ray burst (GRB). They are briefly bright enough to be visible billions of light years away, but they are difficult to study because they are very short lived and take place at seemingly random locations and times. Astronomers rely on satellites like Swift which detects a GRB and immediately relays the information to observers worldwide via the Gamma-Ray Burst Coordinates Network. If a gamma-ray burst occurs when it is dark and clear at Palomar, the observatory's robotic 60-inch telescope immediately slews to the coordinates provided and images the fading optical glow of the explosion.

“The rapid response by the Palomar 60-inch telescope is possible only because of HPWREN. With it we have observed and categorized some of the most distant and energetic explosions in the universe,” remarks Shri Kulkarni, MacArthur Professor of Astronomy and Planetary Science and director of the Caltech Optical Observatories. These observations have allowed astronomers to reach new frontiers by classifying the bursts and theorizing about their origins.

For the last decade astronomers have been using indirect methods and giant telescopes (like the Keck in Hawaii) to make their first discoveries of planets outside our solar system (called exoplanets). The smallest telescope at the Palomar Observatory is performing its own search for exoplanets. With a small telescope it is possible to detect a giant Jupiter-sized world that lies close to its parent star. By looking at a great many stars each night the HPWREN-powered Sleuth Telescope hopes to catch such a planet in the act of passing directly in front of its star. Such an eclipse, known as a transit, dims the light of the star by about one percent.

Sleuth is an automated telescope, capable of observing target areas of the night sky without much human interaction. All the required actions are scripted in advance, and a computer running this script is placed in charge of the telescope. The observer can then get a good night's sleep and receive the data in the morning. The automated nature of this procedure allows for remote observing, so the observer need not even be on the mountain.

“Living in the modern age of astronomy has made observing much more efficient. Every night we transfer about 4 gigabytes of data via HPWREN from Sleuth to Caltech in Pasadena. It is on my computer and analyzed before I arrive at work in the morning,” says Caltech graduate student Francis O'Donovan. “The ability to process the previous night's data enables us to quickly check the quality of that data. We can then ensure the telescope is operational before beginning the next night's observations.”

“The current HPWREN funding supports research into an understanding, prioritization, and policy-based re-routing of data network traffic, something the bursty and predominantly night-time, high-volume observatory traffic is very useful for,” explains Braun. “This being alongside other research and education traffic, also including continuous low-volume sensor data with tight real-time requirements, creates an ideal testbed for this network research as well.”

The High Performance Wireless Research and Education Network program is an interdisciplinary and multi-institutional UC San Diego research program led by principal investigator Hans-Werner Braun at the San Diego Supercomputer Center and co-principal investigator Frank Vernon at the Scripps Institution of Oceanography. HPWREN is based on work funded by the National Science Foundation. The HPWREN web site is at http://hpwren.ucsd.edu/.

More information on the tenth planet and how it was found can be seen at: http://www.gps.caltech.edu/~mbrown/planetlila/index.html and http://www.astro.caltech.edu/palomar/survey.html

For more on Palomar's gamma-ray burst research, go to: http://www.astro.caltech.edu/palomar/grb.html and http://www.astro.caltech.edu/palomar/exhibits/grb/

For more information on Sleuth: http://www.astro.caltech.edu/~ftod/tres/sleuth.html

—–

Source: Paul K. Mueller, UCSD; Caltech

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire