Intel Threads Its Way to Parallel Programming

By Michael Feldman

September 1, 2006

As computer systems with multiple CPUs become spread across the IT landscape, programmers will need a new set of development tools to take advantage of this new hardware model. This week, Intel announced a new high-level threading library aimed at software developers who are looking to exploit the parallelism of multi-core and multi-processor SMP systems. The new product, called Threading Building Blocks (TBB), extends C++ to provide thread-level parallelism for shared memory platforms based on x86 and Itanium processors. Intel also announced upgraded versions of its Thread Checker and Thread Profiler products, which will work in conjunction the new TBB product.

Intel's threading software products are part of the company's overall strategy to keep software applications in sync with the multi-core processors that are becoming mainstream in the marketplace. The chipmaker is highly motivated to make it easier for software developers to program those new chips since Intel is predicting that nearly all of the microprocessors it ships will be multi-core by the end of 2007. It's worth noting that AMD processors will get a free ride with TBB, since the x86 targeted code will work transparently with AMD's x86 offerings.

According to James Reinders, Intel marketing director for the company's Developer Products Division, his group has a fair amount of experience with multi-core and multi-processor software development, at both the very high end in high performance computing — with some of their tools for MPI — and in the workstation and server environments.

“That experience gives us an understanding of the challenges that the industry and we face when you look at the problem of exploiting parallelism,” says Reinders. “I have no doubt that this transformation is going to happen. In fact, I'm very confident that ten years from now, virtually every programmer is going to say that they understand and think about parallelism.”

But Reinders also understands there are very significant challenges that need to be understood. One of them is scalability: Can you get an 8X performance increase when you go from two threads to sixteen? Another has to do with a new set of problems that threading introduces, specifically, deadlocks and race conditions.

“The third big challenge is ease of programming,” says Reinders. “Right now, some of the ways of introducing threading add a lot of complexity to a program. And we don't believe that's necessary. But it's just a fact of life when you're dealing with programming languages that haven't been extended or that don't comprehend parallelism.”

C++ is one such language. TBB extends C++ via a run-time library that uses the language's template feature to abstract parallel programming constructs. The run-time library invokes the low-level thread and mutex capabilities of the target operating system to provide high-level thread management. This allows C++ developers to perform parallel programming without having to be concerned with native thread management or the maintenance of critical regions. The thread library API is portable across Linux, Windows, or Mac OS platforms (although, in version 1.0, support for 64-bit x86 is missing for Mac OS and Itanium is only supported on Linux). The TBB run-time library is royalty free, so with a single unit price of $299, ISVs can ship as many applications as they want without having to give Intel a piece of the action.

Using TBB to implement parallelism results in a much smaller amount of source code as compared to a native thread implementation. In the latter case, the application-specific algorithms can get lost in all the code devoted to thread management and breaking up the problem.

“At the end of the day, you may have over three quarters of your code devoted to managing threads,” observes Reinders. “That's overwhelming. I do not believe we will succeed if we tell people that they need to write all this [code] to take advantage of threading.”

The template library supplies a broad set of generic parallel algorithms — simple ones, like fors and reduces, and more complex ones, like whiles and pipelines. The library also provides an abstraction for thread-safe containers — data structures (e.g., hash maps, vectors and queues) that are protected from mutual access by multiple threads. This frees the developer from having to explicitly create them and then enforce their protection with mutexes. Interfaces to low-level features like atomic operations, scalable memory allocation, locks and mutexes are also supplied in the library.

“We're really able to do some incredibly sophisticated things under the hood,” says Reinders. “And if you really want to get a scalable threaded application, you need to do these things. But I would not want to try to educate everyone how to write these; or even if I educated them, I wouldn't want to suggest that everyone should spend their time writing wonderful core threading capabilities like task queuing and stack management.”

While the superiority of TBB as compared to programming with low-level Windows or Linux (POSIX) threads is fairly obvious, its advantages over OpenMP, an open standard that supports shared-memory parallelism, are more subtle. Both TBB and OpenMP provide high-level parallel programming constructs, but the latter does so via language pragmas and environment variables. Therefore OpenMP requires special compiler support. Microsoft has added support for OpenMP within the last year, but as of today, GCC still has still not implemented it in its compilers — although the GNU community is reportedly working on it.

In contrast, the language-based approach of the TBB template library avoids the problem of third-party compiler support. That means developers can theoretically use the product with anyone's standard C++ implementation, although it has mainly been tested with the Microsoft and GNU compilers.

And there's an additional advantage to the template library model. For a variety of reasons, users often cling to older versions of compilers, upgrading only sporadically. Since TBB uses only standard C++, it can be used regardless of compiler version.

“The beauty of using templates is that they will work with all C++ compilers,” says Reinders. “We're not adding a language feature that requires you to add a specific compiler. This is much easier to slip in.”

And unlike standard OpenMP, TBB provides a generalized abstraction for task parallelism (task queueing). Intel has incorporated task queueing into the OpenMP implementation for its compilers, but this is not yet supported in the standard. With Intel's encouragement, this feature is being considered for OpenMP 3.0 (see the related article in this issue, “The Future of User-Directed SMP Parallel Programming“).

According to Reinders, Threading Building Blocks was created to help fill in some of these weaknesses in other parallel programming models. But he doesn't envision it replacing OpenMP or even native threading programming. In fact, TBB was designed to work easily in a mixed threading model.

“We've seen some applications that use OpenMP and native threading in different parts of the application,” says Reinders. “That's been something we've been careful to support. Based on that experience, we've made Threading Building Blocks so that it can coexist with these other models. To have that flexibility seems really important.”

The encapsulation of all this functionality into a library offers another advantage. As processors get more cores and add enhanced hardware threading capabilities, the thread library can be retuned and optimized for the more advanced hardware. Reinders says the TBB software is designed to evolve with the hardware innovation that will occur, while providing the same level of abstraction and supporting the ability to work on older processors.

One might infer that this level of abstraction is going to exact a performance penalty. According to Reinders, this is not the case. In the example of a 2D ray tracing implementation he showed me, the high-level TBB code outperformed the native threading version, while scaling from two through eight processors. Also, it's worth noting that the TBB code maintained linear scalability through this range; the native implementation did not. Reinders surmises that the lower performing native implementation example is the result of an inefficient task queue algorithm, although optimizing it would probably increase the size and complexity of the code even more.

According to Reinders, the initial implementation of TBB will be practical for no more than 16 to 32 threads. He believes that could be extended today with additional software refinements, but hardware innovations will probably be needed to scale it beyond 128 threads.

“We think Threading Building Blocks is the right abstraction to move people into this space,” says Reinders. “The proof will be a few years as we refine Threading Building Blocks and come out with new versions.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

Nvidia Appoints Andy Grant as EMEA Director of Supercomputing, Higher Education, and AI

March 22, 2024

Nvidia recently appointed Andy Grant as Director, Supercomputing, Higher Education, and AI for Europe, the Middle East, and Africa (EMEA). With over 25 years of high-performance computing (HPC) experience, Grant brings a Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Houston We Have a Solution: Addressing the HPC and Tech Talent Gap

March 15, 2024

Generations of Houstonian teachers, counselors, and parents have either worked in the aerospace industry or know people who do - the prospect of entering the fi Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire