Computational Biology: Challenges and Opportunities

By Tiffany Trader

September 22, 2006

The current issue of the quarterly publication, CTWatch, focuses on the issues and challenges facing the field of computational biology today and in the future. A recurring theme throughout all of the articles is that the field of biology is becoming increasingly data driven and is producing data faster than computers can process it. The authors address the limitations of our current cyberinfrastructure and suggest strategies to overcome these challenges.

In his introduction, “Trends in Cyberinfrastructure for Bioinformatics and Computational Biology,” Rick Stevens, Associate Laboratory Director, Computing and Life Sciences of Argonne National Laboratory and Professor, Computer Science Department of The University of Chicago, outlines three major trends in biology research: the increasing availability of high-throughput data, the acceleration of the pace of questions whose answers rely on increasing computation resources, and simulation and modeling technologies that will eventually lead to predictive biological theory.

Stevens addresses the role of petascale computing with regard to fundamental biological problems, such as the evolutionary history of genes and genomes. This is significant, as the number of completed genome sequences will reach 1,000 in the next few years. He provides a list of multiple “problem areas” and their estimated time to completion at three levels of computing power (360, 1000, and 5000 teraflops). For example, on the IBM Blue Gene/L, screening “all known microbial drug targets against the public and private databases of chemical compounds to identify potential new inhibitors and potential drugs,” would take one year for all microbial targets at 360 teraflops, a one month for all microbial targets at 1000 teraflops, and one machine year for all known human drug targets at 5000 teraflops.

Eric Jakobsson of the National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign discusses the initiatives that will be required between applications scientists and system architects in order to come up with a suitable cyberinfrastructure for biology in “Specifications for the Next-Generation Computational Biology Infrastructure.” One of the five integration models Jakobsson outlines is “Integration of algorithmic development with computing architecture design.” He says:

“The different types of biological computing have vastly different patterns of computer utilization. Some applications are very CPU-intensive, some require large amounts of memory, some must access enormous data stores, some are much more readily parallelizable than others, and there are highly varied requirements for bandwidth between hard drive, memory, and processor.”

Jakobsson suggests that more extensive mutual tuning of computer architecture to applications software would make existing and projected computational resources more productive. One case of such tuning is the molecular simulation code Blue Matter, designed to leverage the architecture of the IBM Blue Gene supercomputer. Jakobsson praises the Blue Matter-Blue Gene combination, declaring that it has enabled important new discoveries.
 
Jakobsson also calls for better training in the area of computational biology at the undergraduate and graduate levels. He points to the University of California at Merced as one institution that has fully integrated computing into all levels of its biology curriculum as called for in the National Academy of Sciences BIO 2010 report.

In “Genome Sequencing vs. Moore's Law: Cyber Challenges for the Next Decade” Folker Meyer of the Argonne National Laboratory addresses the challenge of the number of sequenced genomes growing faster than Moore's Law. He states that the number of available complete genomic sequences is doubling every 12 months, faster than Moore's 18 months. “The analysis of genomic sequences requires serious computational effort: most analysis techniques require binary comparison of genomes or the genes within genomes. Since the number of binary comparisons grows as the square of the number of sequences involved, the computational overhead of the sequence comparisons alone will become staggering.”

As the number of sequences grows so do the number of algorithms to study them, requiring additional computer power. For example, using Hidden Markov Models to search for sequence similarities not visible with the traditionally used BLAST algorithm requires greater computing resources. The author states that the TeraGrid is one of the few resources that can handle the computational requirement. We need to overcome these limitations in order to study and better understand “crop plants, pathogens and ultimately human beings.” To resolve the gap between data and resource, the author calls for new bioinformatics techniques as well as high-throughput computing, concluding that “biology is in the middle of a paradigm shift towards becoming a fully data driven science.”

In “Computing and the “Age of Biology,' ” Natalia Maltsev of the Argonne National Laboratory calls for the “development of high-throughput computational environments that integrate (i) large amounts of genomic and experimental data, (ii) comprehensive tools and algorithms for knowledge discovery and data mining, and (iii) comprehensive user interfaces that provide tools for easy access, navigation, visualization, and annotation of biological information.” For achieving this integrated environment, Maltev makes four recommendations.

First, she calls for large, public, scalable computational resources to handle the exponential growth of biological data. For example, the largest genomic database, GenBank, contains 56 billion bases, from 52 million sequences; and as the cost of sequencing new genomes drops, the rate of growth of GenBank is expected to increase dramatically.

Second, Maltev proposes a new model to handle the increasing complexity of biological data. She states that biology is becoming increasingly multi-disciplinary, “using information from different branches of life sciences; genomics, physiology, biochemistry, biophysics, proteomics, and many more.” The model needs to incorporate various classes of biological information as well as similar classes of data from different resources. According to Maltev, the difficulty with an integrated model is due to “the large volume and complexity of data, the distributed character of this information residing in different databases, shortfalls of current biological ontologies, and generally poor naming conventions for biological objects.”

Maltsev's third recommendation is algorithm development. The current bioinformatic tools (for example, BLAST and FASTA) are not adequate to handle the exponential growth of sequence data. Maltev says “bioinformatics will significantly benefit from the development of a new generation of algorithms that will allow efficient data mining and identification of complex multidimensional patterns involving various classes of data.”

Maltev's fourth and final recommendation is the development of collaborative environments that will allow researches in different locations to view and analyze the data. Maltev claims that storing data and its analysis in one location will not meet the needs of biology in the future. She also calls for visualization of information to reduce its complexity.

Maltev's article provides an accessible framework for understanding the challenges of computational biology. In the “age of biology,” computing and biology will unite to solve major global problems such as curing deadly diseases and ending world hunger.

The message in all of these articles is that biology has become a data-driven discipline and is becoming increasingly more so. Computational resources cannot keep up with the data, and questions are piling up faster than answers. Remedying this situation is essential for progress.

—–

To view the complete issue of CTWatch, visit their website at http://www.ctwatch.org/.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire