Spreading Tera at the Intel Developer Forum

By Michael Feldman

September 29, 2006

In San Francisco this week, Intel execs evangelized the company's vision of the future of computing. CEO Paul Otellini used the Intel Developer Forum (IDF) as a platform to present the overall product roadmap for the next four years and beyond. CTO Justin Rattner talked about their long-range terascale processor development and the new types of applications that will be using this advanced technology.

In the near-term, Intel is planning to accelerate its micro-architecture design cycle by producing new core architectures every two years, instead of the four to six that they've done in the past. He displayed a chart that mapped new micro-architectures coming in 2008 (code-named Nehalem and targeted at 45nm silicon manufacturing technology), followed by another in 2010 (code-named Gesher and targeted at 32nm). Otellini said they're on track to use their 45nm technology in new products starting in the second half of 2007.

Intel, which has been shipping 65nm processors since June, has perhaps a six-month lead over rival AMD in silicon manufacturing technology. The first Opteron and Athlon processors on 65nm technology are not expected until the end of this year. Intel's process technology advantage may be further extended when it jumps to 45nm in 2007. But AMD, with its HyperTransport technology, is forcing its larger rival to play catch-up in the processor interconnect arena. At the IDF, Intel said very little about the roadmap for its CSI technology. CSI, which stands for Common System Interconnect or Common System Interface depending on who you talk to, is allegedly Intel's answer to HyperTransport, but apparently was not worth talking about yet.

In the meantime, Intel is promoting an open-standard interconnect technology called “Geneseo,” which is characterized as an extension to the popular PCI Express. Like AMD's HyperTransport-based Torrenza initiative, Geneseo is designed to allow other vendors to attach special-purpose acceleration processors (e.g., numerical co-processor, XML engines and encryption/decryption devices) to the host processor. Intel is working with a number of partners on this technology, including IBM, but it's unclear when Geneseo will see commercial application.

The most forward-looking presentation at the IDF came from Intel CTO Justin Rattner. He revealed some of the details of the work being done by the company's Tera-scale Computing Research Program. In a departure from commercial designs, Rattner described a prototype that contained 80 RISC-like processing cores arranged in a tiled fashion and bonded to a vertical stack of memory chips. According to Rattner, this type of three-dimensional configuration allows thousands of interconnects which can sustain memory-to-processor transfer rates of terabytes per second. Intel's recently demonstrated hybrid silicon laser would be employed for terabit/second connectivity to other processors, I/O devices and even other systems. The whole idea is to produce a terascale processor, a device that will deliver a teraflop of performance and have access to terabytes/second of bandwidth — literally a supercomputer on a chip. The technology could be commercialized with the next five years.

Such a chip is not destined for traditional supercomputing. Intel does not see nuclear weapons simulations or global climate modeling as a growth industry. A terascale processor would presumably find a comfortable home in large-scale data centers, where multi-threaded Web service applications are all the rage. This technology could also propel new application markets and it is here where Intel sees the path to high-volume production. Not content with a build-it-and-they-will-come approach, Intel has already broadly defined the classes of applications that would inhabit such processors. They are called RMS: Recognition, Mining and Synthesis. Intel defines them as follows:

Recognition: Machine-learning capabilities that allow computers to examine data (text, images, video, audio, etc.) and construct mathematical models based on what they identify. An example would be constructing a model of the face of a specific person.

Mining: The capability to sift through large amounts of real-world data related to the patterns or models of interest. Put more simply, it is the ability to find an instance of a specific model amidst a large volume of data. For example, mining could entail finding a particular person's face from a large number of images of various resolutions, lighting environments, and so on.

Synthesis: The capability to explore theoretical scenarios by constructing new instances of a model. For example, this could be projecting what a person's face might look like if they were younger or older.

One example of an application that incorporates these capabilities would be a “smart” car that could drive itself to a destination (like picking you up and taking you home). Another example might be a Web service that allowed you to do virtual clothes shopping across the Internet, enabling you to “try on” individual items and see how they looked on you along with other items in your current wardrobe.

Imagine the economic effects that would result from these two rather simple examples. The smart car would eliminate cabs, driving schools, traffic officers and most of the DMV, as well as revolutionize commercial ground transport. The second example would accelerate the demise of brick and mortar clothing stores, change the profile of shopping malls and could lead to designer clothing for the middle class.

Justin Rattner wrote about the emergence of these new application domains in his recent blog entry:

“Such emerging 'killer apps' of the future have a few important attributes in common – they are highly parallel in nature, they are built from a common set of algorithms, and they have, by today's standards, extreme computational and memory bandwidth requirements, often requiring teraFLOPS of computing power and terabytes per second of memory bandwidth, respectively. Unfortunately the R&D community is lacking a suite of these emerging, highly-scalable workloads in order to guide the quantitative design of our future computing systems.”

Because of this deficiency, Intel has taken it upon itself to help build a new software culture that is focused around parallel programming. A company white paper, “From a Few Cores to Many, A Tera-scale Computing Research Overview,” reflects the company's mission to convert the programming masses to HPC. It states:

“In the tera-scale future, software should be designed to use available parallelism to gain the performance benefit of the increased numbers of cores. This requires that software developers design parallel programs, a traditionally time-consuming and error-prone task which requires developers to think differently than the way they do today. Teaching mainstream and future developers to identify and then effectively exploit parallelism is something Intel must foster if these skills are to move from a narrow domain of high-performance computing (HPC) experts into the mainstream.”

If the future of computing is high performance computing, then the vendors that figure out a way to drive this technology into the mainstream will dominate IT and relegate their rivals to niche markets or worse. Killer applications indeed.

To read Justin Rattner's blog, visit http://blogs.zdnet.com/OverTheHorizon/.

For more information on Intel's Tera-Scale research program, download the white paper at ftp://download.intel.com/research/platform/terascale/terascale_overview_paper.pdf.

—–

As always, comments about HPCwire are welcomed and encouraged. Write to me, Michael Feldman, at [email protected].

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire