Spreading Tera at the Intel Developer Forum

By Michael Feldman

September 29, 2006

In San Francisco this week, Intel execs evangelized the company's vision of the future of computing. CEO Paul Otellini used the Intel Developer Forum (IDF) as a platform to present the overall product roadmap for the next four years and beyond. CTO Justin Rattner talked about their long-range terascale processor development and the new types of applications that will be using this advanced technology.

In the near-term, Intel is planning to accelerate its micro-architecture design cycle by producing new core architectures every two years, instead of the four to six that they've done in the past. He displayed a chart that mapped new micro-architectures coming in 2008 (code-named Nehalem and targeted at 45nm silicon manufacturing technology), followed by another in 2010 (code-named Gesher and targeted at 32nm). Otellini said they're on track to use their 45nm technology in new products starting in the second half of 2007.

Intel, which has been shipping 65nm processors since June, has perhaps a six-month lead over rival AMD in silicon manufacturing technology. The first Opteron and Athlon processors on 65nm technology are not expected until the end of this year. Intel's process technology advantage may be further extended when it jumps to 45nm in 2007. But AMD, with its HyperTransport technology, is forcing its larger rival to play catch-up in the processor interconnect arena. At the IDF, Intel said very little about the roadmap for its CSI technology. CSI, which stands for Common System Interconnect or Common System Interface depending on who you talk to, is allegedly Intel's answer to HyperTransport, but apparently was not worth talking about yet.

In the meantime, Intel is promoting an open-standard interconnect technology called “Geneseo,” which is characterized as an extension to the popular PCI Express. Like AMD's HyperTransport-based Torrenza initiative, Geneseo is designed to allow other vendors to attach special-purpose acceleration processors (e.g., numerical co-processor, XML engines and encryption/decryption devices) to the host processor. Intel is working with a number of partners on this technology, including IBM, but it's unclear when Geneseo will see commercial application.

The most forward-looking presentation at the IDF came from Intel CTO Justin Rattner. He revealed some of the details of the work being done by the company's Tera-scale Computing Research Program. In a departure from commercial designs, Rattner described a prototype that contained 80 RISC-like processing cores arranged in a tiled fashion and bonded to a vertical stack of memory chips. According to Rattner, this type of three-dimensional configuration allows thousands of interconnects which can sustain memory-to-processor transfer rates of terabytes per second. Intel's recently demonstrated hybrid silicon laser would be employed for terabit/second connectivity to other processors, I/O devices and even other systems. The whole idea is to produce a terascale processor, a device that will deliver a teraflop of performance and have access to terabytes/second of bandwidth — literally a supercomputer on a chip. The technology could be commercialized with the next five years.

Such a chip is not destined for traditional supercomputing. Intel does not see nuclear weapons simulations or global climate modeling as a growth industry. A terascale processor would presumably find a comfortable home in large-scale data centers, where multi-threaded Web service applications are all the rage. This technology could also propel new application markets and it is here where Intel sees the path to high-volume production. Not content with a build-it-and-they-will-come approach, Intel has already broadly defined the classes of applications that would inhabit such processors. They are called RMS: Recognition, Mining and Synthesis. Intel defines them as follows:

Recognition: Machine-learning capabilities that allow computers to examine data (text, images, video, audio, etc.) and construct mathematical models based on what they identify. An example would be constructing a model of the face of a specific person.

Mining: The capability to sift through large amounts of real-world data related to the patterns or models of interest. Put more simply, it is the ability to find an instance of a specific model amidst a large volume of data. For example, mining could entail finding a particular person's face from a large number of images of various resolutions, lighting environments, and so on.

Synthesis: The capability to explore theoretical scenarios by constructing new instances of a model. For example, this could be projecting what a person's face might look like if they were younger or older.

One example of an application that incorporates these capabilities would be a “smart” car that could drive itself to a destination (like picking you up and taking you home). Another example might be a Web service that allowed you to do virtual clothes shopping across the Internet, enabling you to “try on” individual items and see how they looked on you along with other items in your current wardrobe.

Imagine the economic effects that would result from these two rather simple examples. The smart car would eliminate cabs, driving schools, traffic officers and most of the DMV, as well as revolutionize commercial ground transport. The second example would accelerate the demise of brick and mortar clothing stores, change the profile of shopping malls and could lead to designer clothing for the middle class.

Justin Rattner wrote about the emergence of these new application domains in his recent blog entry:

“Such emerging 'killer apps' of the future have a few important attributes in common – they are highly parallel in nature, they are built from a common set of algorithms, and they have, by today's standards, extreme computational and memory bandwidth requirements, often requiring teraFLOPS of computing power and terabytes per second of memory bandwidth, respectively. Unfortunately the R&D community is lacking a suite of these emerging, highly-scalable workloads in order to guide the quantitative design of our future computing systems.”

Because of this deficiency, Intel has taken it upon itself to help build a new software culture that is focused around parallel programming. A company white paper, “From a Few Cores to Many, A Tera-scale Computing Research Overview,” reflects the company's mission to convert the programming masses to HPC. It states:

“In the tera-scale future, software should be designed to use available parallelism to gain the performance benefit of the increased numbers of cores. This requires that software developers design parallel programs, a traditionally time-consuming and error-prone task which requires developers to think differently than the way they do today. Teaching mainstream and future developers to identify and then effectively exploit parallelism is something Intel must foster if these skills are to move from a narrow domain of high-performance computing (HPC) experts into the mainstream.”

If the future of computing is high performance computing, then the vendors that figure out a way to drive this technology into the mainstream will dominate IT and relegate their rivals to niche markets or worse. Killer applications indeed.

To read Justin Rattner's blog, visit http://blogs.zdnet.com/OverTheHorizon/.

For more information on Intel's Tera-Scale research program, download the white paper at ftp://download.intel.com/research/platform/terascale/terascale_overview_paper.pdf.

—–

As always, comments about HPCwire are welcomed and encouraged. Write to me, Michael Feldman, at [email protected].

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pressing needs and hurdles to widespread AI adoption. The sudde Read more…

Quantinuum Reports 99.9% 2-Qubit Gate Fidelity, Caps Eventful 2 Months

April 16, 2024

March and April have been good months for Quantinuum, which today released a blog announcing the ion trap quantum computer specialist has achieved a 99.9% (three nines) two-qubit gate fidelity on its H1 system. The lates Read more…

Mystery Solved: Intel’s Former HPC Chief Now Running Software Engineering Group 

April 15, 2024

Last year, Jeff McVeigh, Intel's readily available leader of the high-performance computing group, suddenly went silent, with no interviews granted or appearances at press conferences.  It led to questions -- what's Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Institute for Human-Centered AI (HAI) put out a yearly report to t Read more…

Crossing the Quantum Threshold: The Path to 10,000 Qubits

April 15, 2024

Editor’s Note: Why do qubit count and quality matter? What’s the difference between physical qubits and logical qubits? Quantum computer vendors toss these terms and numbers around as indicators of the strengths of t Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips are available off the shelf, a concern raised at many recent Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Computational Chemistry Needs To Be Sustainable, Too

April 8, 2024

A diverse group of computational chemists is encouraging the research community to embrace a sustainable software ecosystem. That's the message behind a recent Read more…

Hyperion Research: Eleven HPC Predictions for 2024

April 4, 2024

HPCwire is happy to announce a new series with Hyperion Research  - a fact-based market research firm focusing on the HPC market. In addition to providing mark Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

Leading Solution Providers

Contributors

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire