The Real Deal

By Deb Aronson

October 13, 2006

With innovative algorithms and TeraGrid resources at PSC, economist John Rust of the University of Maryland is solving the most realistically specified versions yet attempted of the life-cycle model, a central paradigm of economics modeling.

Who among us hasn’t pondered strange human behaviors? Some people invest in beanie babies. Some wear bell-bottom hip huggers. Some of us live in populous cities located in earthquake or flood zones.

Despite many irrational human behaviors, economists have the professional task of making reliable predictions about the economy, a task that involves trying to find underlying logic in the processes by which people make decisions in consumer spending, housing, employment, savings, healthcare and many other economic-related realms of activity. One of the best tools economists have to help forecast economic weather, despite the inherent vagaries of human decision-making, is the life-cycle model.

“The life-cycle model is one of the central paradigms in economics,” says John Rust, professor of economics at the University of Maryland at College Park. “With this approach, observed behavior can be explained as rational ‘best responses’ based on the structure of economic institutions, such as the social security system, and the real uncertainties individuals face regarding health, earnings, prices and many other uncertainties.”

The life-cycle model mathematically formulates decision-making as a series of sequential decisions influenced by variables over the course of a lifetime. It has been applied usefully in many areas of policy making. Nevertheless, the model’s predictive ability has been limited because it hasn’t been possible to solve complex formulations that account for a realistically broad range of variables. “The theoretical predictions of the model,” says Rust, “haven’t been well understood since, except for trivially simple special cases, the model doesn’t have a closed-form solution.”

Beginning several years ago, Rust used PSC’s Cray T3E to develop novel algorithms that, for the first time, make it possible to apply the computational muscle of massively parallel systems to the life-cycle model. With this powerful approach, he and graduate students Joseph Nichols and Gaobo Pang have used LeMieux, PSC’s terascale system, to solve the largest, most realistically specified versions of the life-cycle model ever attempted.

Their approach has yielded insights in a number of areas. Nichols, now at the Federal Reserve, used LeMieux to develop the first realistic life-cycle model treatment of housing and mortgages, resolving a previously puzzling question about why people hold a large fraction of investment in housing assets. A study by Pang, used LeMieux and a detailed life-cycle model to find that, contrary to expectation, tax-deferred savings accounts would lead to substantial new savings and could induce earlier retirement.

With his innovative algorithms and LeMieux, Rust — an advisor to the Social Security Administration during the Clinton presidency — has applied the life-cycle model in many areas. Among several government-policy related studies, he developed and tested a proposal by which the Social Security Administration can improve its disability benefit process, targeting those who are truly disabled at less cost than current procedures.

“When the life-cycle model is fully estimated and tested,” says Rust, “it has a number of practical uses for predicting the impacts of proposed changes to the Social Security program, including raising the early retirement age, introducing individual accounts, and changing Medicare coverage.” Modeling these proposed changes instead of passing them with no prior study can protect the American public, says Rust, from becoming “inadvertent crash-test dummies.”

Most interesting, perhaps, in Rust’s work with LeMieux are the surprises that emerge from the ability to solve more realistic formulations of the model — such as his recent work on a long-puzzling question about decline in consumption after retirement. Contrary to prior studies, Rust’s computations — taking into account variables not before considered — show that this decline is a rational response consistent with the life-cycle model. The result has stirred controversy.

“This is the power of computational economics,” says Rust, “to arrive at results we’re not able to anticipate by our economic intuitions from simpler versions of the model. It takes supercomputing to show how basically simple, elegant equations can yield answers we would never guess at or otherwise be able to see.”

Breaking the Curse

How do you quantify the complexities of human behavior? Economists have wrestled with this problem since at least the 1940s, when researchers in a number of fields — notably John von Neumann and Oskar Morgenstern — arrived at an approach called “backward induction.” In the simplest terms, backward induction means starting at the end and working backward to see what decisions led to the final outcome.

The life-cycle model uses backward induction and assumes that people try to make the best decisions possible, based on the information available to them. The beauty of the model is that it can accommodate uncertainty — saving for retirement being a classic example. No one knows, in a precise way, how much to save since no one knows how long they’ll live or what kinds of health problems they might experience, not to mention future rates of inflation or other economic factors.

The life-cycle model, furthermore, is predicated on preferences and beliefs — such as individual priorities about leisure versus work or perceptions about future health and longevity. Rust’s algorithms implementing the model are best described as “polyalgorithms” — an inner algorithm does the backward induction (often called “dynamic programming”) within an outer algorithm that searches for values of the preferences and beliefs parameters. The inner algorithm solves the model hundreds or thousands of times to find optimal decisions and iterates back and forth with the outer algorithm until the predicted behavior matches well with observed behavior over the life cycle.

Although variables will change and details of the model specification differ, life-cycle models can be applied to a huge variety of problems. “The life-cycle model has the ability to provide an explanation for almost everything we do in our lives,” says Rust, “starting with child rearing, learning and schooling, dating and sex, going to college, searching for the first job, getting married, buying a first home, choosing whether to have children and how many, saving for their college and your retirement, or deciding when to retire.”

A serious limitation of the life-cycle model has been the so-called “curse of dimensionality.” For each decision cycle, the program must find optimal values for the variables, and a single solution requires many billions of algebraic operations. For every variable added, increasing its realism, the computing time increased exponentially. Rust’s novel algorithms introduce a randomizing routine that, in effect, breaks the curse of dimensionality. He achieves linear scaling on parallel architectures for as many as 800 processors, making it possible to solve problems that would take many hours on a single processor in a matter of minutes on a parallel system such as LeMieux.

The Problem With Toys

Rust’s recent modeling of retirement consumption goes beyond prior life-cycle modeling of this problem and suggests — contrary to prevailing wisdom — that, with a sufficiently realistic statement of the life-cycle model, retirement data that’s been seen as “irrational” can be explained as a rational response. By taking into account the “labor-effect factor” — the possibility that people choose to retire earlier with less income than they otherwise might, because they value leisure — his modeling arrived at a new way of fitting the model with observed behavior.

Earlier this year in an invited talk at the Federal Reserve Board in Chicago, Rust stirred controversy when he presented these findings. Previous work on this problem has relied on a concept called “consumption smoothing” — which assumes people adjust consumption gradually in response to anticipated events. Skepticism about his finding, Rust believes, comes in part from reliance on life-cycle models — “toy models” — that don’t account realistically for the choices people face as retirement nears. Consumption smoothing is a strong intuition that economists arrived at from toy models, and “it doesn’t really generalize.”

The inadequately specified “toy models” can lead to bad or unnecessary policy changes. “Some economists point to the drop in consumption after retirement as ‘proof’ that individuals are myopic,” says Rust, “and experts therefore think that having a large, mandatory Social Security program is the way to protect these poor decision makers in old age and keep them out of poverty. My work indicates that the drop in consumption need not be a sign of myopia and can indeed be an optimal response by a rational, forward-looking consumer. In general, if people are rational, it only hurts them when the government forces them to save in a certain way, especially if it makes them save too much in the early part of their life when they are liquidity constrained.”

Beyond the challenging theoretical insights from Rust’s work, there are significant practical applications. From a public policy perspective, says Rust, being able to model human behavior at this level of detail is far more cost effective than attempting to measure behaviors in a population.

“These models can get so complex,” he says, “that it’s only through what the supercomputer shows us that we can open our eyes and think in new ways. This represents an important contribution to the science of economics that, I believe, will become more and more important over time — as the tools become more powerful and more economists learn to use them.”

—–

For more information, including graphics, visit http://www.psc.edu/science/2006/realdeal/.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

Nvidia Appoints Andy Grant as EMEA Director of Supercomputing, Higher Education, and AI

March 22, 2024

Nvidia recently appointed Andy Grant as Director, Supercomputing, Higher Education, and AI for Europe, the Middle East, and Africa (EMEA). With over 25 years of high-performance computing (HPC) experience, Grant brings a Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Houston We Have a Solution: Addressing the HPC and Tech Talent Gap

March 15, 2024

Generations of Houstonian teachers, counselors, and parents have either worked in the aerospace industry or know people who do - the prospect of entering the fi Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire