The Real Deal

By Deb Aronson

October 13, 2006

With innovative algorithms and TeraGrid resources at PSC, economist John Rust of the University of Maryland is solving the most realistically specified versions yet attempted of the life-cycle model, a central paradigm of economics modeling.

Who among us hasn’t pondered strange human behaviors? Some people invest in beanie babies. Some wear bell-bottom hip huggers. Some of us live in populous cities located in earthquake or flood zones.

Despite many irrational human behaviors, economists have the professional task of making reliable predictions about the economy, a task that involves trying to find underlying logic in the processes by which people make decisions in consumer spending, housing, employment, savings, healthcare and many other economic-related realms of activity. One of the best tools economists have to help forecast economic weather, despite the inherent vagaries of human decision-making, is the life-cycle model.

“The life-cycle model is one of the central paradigms in economics,” says John Rust, professor of economics at the University of Maryland at College Park. “With this approach, observed behavior can be explained as rational ‘best responses’ based on the structure of economic institutions, such as the social security system, and the real uncertainties individuals face regarding health, earnings, prices and many other uncertainties.”

The life-cycle model mathematically formulates decision-making as a series of sequential decisions influenced by variables over the course of a lifetime. It has been applied usefully in many areas of policy making. Nevertheless, the model’s predictive ability has been limited because it hasn’t been possible to solve complex formulations that account for a realistically broad range of variables. “The theoretical predictions of the model,” says Rust, “haven’t been well understood since, except for trivially simple special cases, the model doesn’t have a closed-form solution.”

Beginning several years ago, Rust used PSC’s Cray T3E to develop novel algorithms that, for the first time, make it possible to apply the computational muscle of massively parallel systems to the life-cycle model. With this powerful approach, he and graduate students Joseph Nichols and Gaobo Pang have used LeMieux, PSC’s terascale system, to solve the largest, most realistically specified versions of the life-cycle model ever attempted.

Their approach has yielded insights in a number of areas. Nichols, now at the Federal Reserve, used LeMieux to develop the first realistic life-cycle model treatment of housing and mortgages, resolving a previously puzzling question about why people hold a large fraction of investment in housing assets. A study by Pang, used LeMieux and a detailed life-cycle model to find that, contrary to expectation, tax-deferred savings accounts would lead to substantial new savings and could induce earlier retirement.

With his innovative algorithms and LeMieux, Rust — an advisor to the Social Security Administration during the Clinton presidency — has applied the life-cycle model in many areas. Among several government-policy related studies, he developed and tested a proposal by which the Social Security Administration can improve its disability benefit process, targeting those who are truly disabled at less cost than current procedures.

“When the life-cycle model is fully estimated and tested,” says Rust, “it has a number of practical uses for predicting the impacts of proposed changes to the Social Security program, including raising the early retirement age, introducing individual accounts, and changing Medicare coverage.” Modeling these proposed changes instead of passing them with no prior study can protect the American public, says Rust, from becoming “inadvertent crash-test dummies.”

Most interesting, perhaps, in Rust’s work with LeMieux are the surprises that emerge from the ability to solve more realistic formulations of the model — such as his recent work on a long-puzzling question about decline in consumption after retirement. Contrary to prior studies, Rust’s computations — taking into account variables not before considered — show that this decline is a rational response consistent with the life-cycle model. The result has stirred controversy.

“This is the power of computational economics,” says Rust, “to arrive at results we’re not able to anticipate by our economic intuitions from simpler versions of the model. It takes supercomputing to show how basically simple, elegant equations can yield answers we would never guess at or otherwise be able to see.”

Breaking the Curse

How do you quantify the complexities of human behavior? Economists have wrestled with this problem since at least the 1940s, when researchers in a number of fields — notably John von Neumann and Oskar Morgenstern — arrived at an approach called “backward induction.” In the simplest terms, backward induction means starting at the end and working backward to see what decisions led to the final outcome.

The life-cycle model uses backward induction and assumes that people try to make the best decisions possible, based on the information available to them. The beauty of the model is that it can accommodate uncertainty — saving for retirement being a classic example. No one knows, in a precise way, how much to save since no one knows how long they’ll live or what kinds of health problems they might experience, not to mention future rates of inflation or other economic factors.

The life-cycle model, furthermore, is predicated on preferences and beliefs — such as individual priorities about leisure versus work or perceptions about future health and longevity. Rust’s algorithms implementing the model are best described as “polyalgorithms” — an inner algorithm does the backward induction (often called “dynamic programming”) within an outer algorithm that searches for values of the preferences and beliefs parameters. The inner algorithm solves the model hundreds or thousands of times to find optimal decisions and iterates back and forth with the outer algorithm until the predicted behavior matches well with observed behavior over the life cycle.

Although variables will change and details of the model specification differ, life-cycle models can be applied to a huge variety of problems. “The life-cycle model has the ability to provide an explanation for almost everything we do in our lives,” says Rust, “starting with child rearing, learning and schooling, dating and sex, going to college, searching for the first job, getting married, buying a first home, choosing whether to have children and how many, saving for their college and your retirement, or deciding when to retire.”

A serious limitation of the life-cycle model has been the so-called “curse of dimensionality.” For each decision cycle, the program must find optimal values for the variables, and a single solution requires many billions of algebraic operations. For every variable added, increasing its realism, the computing time increased exponentially. Rust’s novel algorithms introduce a randomizing routine that, in effect, breaks the curse of dimensionality. He achieves linear scaling on parallel architectures for as many as 800 processors, making it possible to solve problems that would take many hours on a single processor in a matter of minutes on a parallel system such as LeMieux.

The Problem With Toys

Rust’s recent modeling of retirement consumption goes beyond prior life-cycle modeling of this problem and suggests — contrary to prevailing wisdom — that, with a sufficiently realistic statement of the life-cycle model, retirement data that’s been seen as “irrational” can be explained as a rational response. By taking into account the “labor-effect factor” — the possibility that people choose to retire earlier with less income than they otherwise might, because they value leisure — his modeling arrived at a new way of fitting the model with observed behavior.

Earlier this year in an invited talk at the Federal Reserve Board in Chicago, Rust stirred controversy when he presented these findings. Previous work on this problem has relied on a concept called “consumption smoothing” — which assumes people adjust consumption gradually in response to anticipated events. Skepticism about his finding, Rust believes, comes in part from reliance on life-cycle models — “toy models” — that don’t account realistically for the choices people face as retirement nears. Consumption smoothing is a strong intuition that economists arrived at from toy models, and “it doesn’t really generalize.”

The inadequately specified “toy models” can lead to bad or unnecessary policy changes. “Some economists point to the drop in consumption after retirement as ‘proof’ that individuals are myopic,” says Rust, “and experts therefore think that having a large, mandatory Social Security program is the way to protect these poor decision makers in old age and keep them out of poverty. My work indicates that the drop in consumption need not be a sign of myopia and can indeed be an optimal response by a rational, forward-looking consumer. In general, if people are rational, it only hurts them when the government forces them to save in a certain way, especially if it makes them save too much in the early part of their life when they are liquidity constrained.”

Beyond the challenging theoretical insights from Rust’s work, there are significant practical applications. From a public policy perspective, says Rust, being able to model human behavior at this level of detail is far more cost effective than attempting to measure behaviors in a population.

“These models can get so complex,” he says, “that it’s only through what the supercomputer shows us that we can open our eyes and think in new ways. This represents an important contribution to the science of economics that, I believe, will become more and more important over time — as the tools become more powerful and more economists learn to use them.”

—–

For more information, including graphics, visit http://www.psc.edu/science/2006/realdeal/.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pressing needs and hurdles to widespread AI adoption. The sudde Read more…

Quantinuum Reports 99.9% 2-Qubit Gate Fidelity, Caps Eventful 2 Months

April 16, 2024

March and April have been good months for Quantinuum, which today released a blog announcing the ion trap quantum computer specialist has achieved a 99.9% (three nines) two-qubit gate fidelity on its H1 system. The lates Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Computational Chemistry Needs To Be Sustainable, Too

April 8, 2024

A diverse group of computational chemists is encouraging the research community to embrace a sustainable software ecosystem. That's the message behind a recent Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire