3D Visualization for Oil and Gas Evolves

By Michael M. Heck

October 20, 2006

Technical Director, Visualization Sciences Group,
Mercury Computer Systems, Inc.

3D visualization has been the key to increased success and efficiency in many areas of exploration and production (E&P). In this industry visualization plays a critical role in gaining insight from data. But often when we discuss visualization, we are talking only about the actual rendering of images on the screen. In fact, the visualization challenge for E&P is characterized by computationally expensive algorithms, a very large number of diverse data sets, and a need for greater interactivity and collaboration. To meet this challenge, we must make data management, computation and rendering work together smoothly and efficiently. In this way we will continue to deliver on 3D visualization’s promise of enabling better decisions in less time.

In the past, the E&P industry has been characterized by its use of big machines for both computation and rendering. As the economics of the “PC” architecture overtook big machines, it seemed that the capabilities of a single machine would never be sufficient. The industry turned to clusters of PCs as a solution. Clusters have been widely adopted for purely computational tasks, but only to a limited extent for visualization. Clusters have significant value for visualization, but also introduce significant complexity and cost in administration compared to single machines. Today, with advances in data management, computing and rendering, the “single machine” is once again a viable platform for visualization of E&P data.

Data management

Multi-resolution bricked volume data.Seismic volumes are typically tens of gigabytes today, and hundreds of gigabytes are not uncommon. Sixty-four-bit operating systems have enabled much larger system memory, but both system memory and texture memory, on the graphics processing unit, remain scarce resources compared to the size of the data sets. An effective solution using hierarchical multi-resolution bricking is now available in visualization toolkits — middleware. In this solution, a pre-processing step subdivides the volume data into “bricks” and computes multiple resolution levels. The full-resolution data is the lowest level of the hierarchy and each higher-level brick represents multiple bricks at the level below. With data in this form, the middleware can initially load the lower-resolution data then automatically refine the image as higher-resolution data is loaded in the background. This enables interactive navigation of the largest volumes even on relatively low-end machines. The user does not have to wait for all the data to be loaded, only the data actually needed is loaded and multiple users can access the same data simultaneously because they use only their own local system memory to load the data. The multi-resolution bricking technique is already used in many E&P applications. VolumeViz from Mercury Computer Systems is one example of this visualization middleware. This same technique can be extended to other large data sets such as horizon surfaces and reservoir models.

Computing

For many years applications enjoyed an automatic increase in performance as CPU vendors competed to increase the clock speed in each new generation of chips. Physical limitations such as power consumption and heat dissipation have largely ended this era. The CPU vendors are now competing to increase the number of “cores” in each new generation of chips. Dual-core chips are already common, with quad — and higher — core chips coming soon. To take advantage of this new performance curve software developers will need to embrace multi-threading.

At the same time, alternative chip architectures have become available that provide much higher floating-point performance than conventional CPU chips, but require even more unconventional programming models. The GPU chip on every 3D graphics board is programmable and has very high performance for some algorithms. Its biggest advantage is the option of combining computing and rendering on the same processor. The Cell BE processor is a next-generation heterogeneous multi-core chip now available on a PCI-Express accelerator board from Mercury Computer Systems. All of these programming models, whether multi-threading or stream computing, present tremendous challenges for software developers.

Automatic use of multiple threads in VolumeViz enables parallel computation on large volume data.Middleware libraries can solve part of this problem. For example the VolumeViz toolkit automatically creates a separate thread to manage data loading and multiple separate threads to do the actual physical I/O. In addition, VolumeViz enables the application to supply computation modules that are executed in parallel by the data threads. This capability enables the application to take advantage of multiple cores without changing the application code. VolumeViz also provides a framework for managing computing and rendering on the GPU chip. Application-defined GPU programs are downloaded and executed by VolumeViz in cooperation with its predefined GPU programs for rendering effects. Middleware libraries also provide building-block algorithms, such as fast Fourier transform (FFT) and convolution that are already highly optimized for new architectures.

 

Rendering

Rendering of 3D images is naturally a parallel-computing task. And each new generation of GPU chip has more “pipes” (parallel computing units), providing an automatic increase in rendering performance. Powerful GPUs are available even in laptop machines, making state-of-the-art rendering accessible to almost all users. The ability to program the GPU results in higher quality rendering, new rendering techniques, and new opportunities for interaction by combining computing and rendering on the GPU. Middleware libraries, such as VolumeViz, implement many of these techniques and provide a convenient framework for applications to implement their own techniques. Some relatively new rendering techniques include bump mapping, dynamic lighting, arbitrarily shaped probes — mapping seismic data onto arbitrary geometry — and co-blending of multiple data sets. Combining computing and rendering in the GPU enables techniques including volume clipping (e.g., against horizon surfaces), volume masking (using values of one volume to mask another volume), and volume warping (e.g., horizon flattening).

Combining multiple data sets (co-blending) on the GPU.

Summary

3D visualization will continue to be a critical part of addressing today’s challenges in exploration and production. To be effective and successful, 3D visualization must integrate solutions for data management, computing and rendering. Today, visualizing large E&P data sets no longer requires a supercomputer or even a super cluster. Advances in both hardware and software are coming together to enable larger data sets, more automated analysis, and more effective presentation of the data on single workstations. Taking advantage of these advances will be challenging for software developers and will require some re-thinking of application architectures and user interfaces. However innovative “middleware” solutions can solve some of these problems and provide a framework for a complete solution.

—–

Michael M. Heck is technical director of the Visualization Sciences Group (VSG) at Mercury Computer Systems, Inc. where he evangelizes the use of 3D visualization. He works with customers to understand their applications and apply visualization technology to meet current requirements, and guides the development of visualization technology to meet future requirements. Mr. Heck has been involved in implementing, managing, teaching and applying 3D visualization software for 20+ years. During that time he has been a speaker at conferences including SEG and the World Oil Visualization Showcase, has been an invited instructor for the SIGGRAPH conference courses, and he has authored technical articles on visualization for publications including Communications of the ACM and the American Oil & Gas Reporter.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

Nvidia Appoints Andy Grant as EMEA Director of Supercomputing, Higher Education, and AI

March 22, 2024

Nvidia recently appointed Andy Grant as Director, Supercomputing, Higher Education, and AI for Europe, the Middle East, and Africa (EMEA). With over 25 years of high-performance computing (HPC) experience, Grant brings a Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Houston We Have a Solution: Addressing the HPC and Tech Talent Gap

March 15, 2024

Generations of Houstonian teachers, counselors, and parents have either worked in the aerospace industry or know people who do - the prospect of entering the fi Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire