Thanks for the Memory

By George Heidekat

October 20, 2006

Computational scientists and other computer users in the future may hum this tune of gratitude, though perhaps few will appreciate how today's supercomputing helped to realize those even more capable hard drives of the future, as well as better iPods, DVDs, and who knows what?

Technology has made steady advances in the ability to write and store vast quantities of information in smaller, more manageable forms, but current technologies are approaching their limit. How much smaller can you make grains of magnetized material before they start to act like the mind of an overstressed, aging human who steps out of the shower and can't remember if he's washed his hair?

Not much, which is why researchers are seeking a way to magnetize a single nanoparticle reliably, so that such a particle — rather than “grains” used in current magnetic-storage media — can record one bit of digital data. The door to this breakthrough is understanding what happens at the quantum level for each atom in a nanoparticle. Laboratory methods, for all their usefulness, can't provide this information. Over the past year, however, Malcolm Stocks, Yang Wang and their colleagues — using PSC's Cray XT3 — have shown that computational simulations can do the job.

“Experimenters can tell us a lot about the magnetic and electrical properties of a nanoparticle as a whole,” says PSC physicist Wang, “but simulations are the only way we have to determine the magnetic moments and electrical charges of individual atoms and therefore to understand the underlying mechanisms that drive the particle's electro-magnetic behavior.”

Quantum-level simulations of even the smallest nanoparticles present huge challenges. “Consider that even a five nanometer-sized cube of iron contains on the order of 12,000 atoms,” says Oak Ridge National Labs physicist Stocks, who leads a team — including Wang, Aurelian Rusanu, Don Nicholson and Markus Eisenbach of Oak Ridge — who have carried out large-scale nanoparticle simulations with powerful software they developed and the XT3.

Along with proving the feasibility of their approach, they have with their most recent simulation — a 14,400 atom iron-platinum nanoparticle — revealed unexpected electro-magnetic features. They found that a boundary region of nanoparticle atoms isolates the particle interior from quantum disturbances — a finding that opens a new window for design and development of nanostructured magnetic materials.

The Superparamagnetic Limit

Steady increases in data-storage density — which have doubled annually for decades — and the similar trend in faster processors have driven us into the information age. Today's magnetic storage can record data at 100 gigabits per square inch, and the next milestone is a terabit, a trillion bits per square inch. Roughly, that's all the x-ray data in a large hospital, or about 5,000 trees worth of printed paper, on one square-inch of magnetic material.

The dominant storage media are films of magnetic particles, composed of complex alloys of various metals, on fast-spinning hard disks. Whether the information is a rap tune on an iPod or a cryptogram on a CIA server, it's written to the disk by magnetizing minute patches of these particles, one patch for each bit of information. The smaller and fewer the particles that can be given a uniform magnetic field to represent binary “1” or “0,” the greater the density.

The roadblock that looms — called the superparamagnetic limit — is that as the grains become smaller, heat effects (called thermal fluctuations) disturb the magnetic moments, resulting in noise, false sensor response, and long-term data loss. Storing information reliably — 10 years is a typical industry standard — requires stable magnetization at room temperature, but at grain sizes much smaller than current technologies, thermal fluctuations, even at room temperature, tend to scramble the data.

Proposed new designs, such as a patterned magnetic nanoparticle media in which each bit is stored in a single nanoparticle, require better understanding of quantum-mechanical behaviors. “There are big pieces of the underlying physics,” says Stocks, “that we don't understand.”

“We want to be able to predict for each nanoparticle,” says Wang, “how much energy it takes to flip the magnetic moment from up to down. And because thermal fluctuations can flip the moment, we need to know the smallest size a particle can be and resist the fluctuation, and we want to understand the interactions between nanoparticles — how close they can be one to another — because we don't want to flip one particle and affect another one.”

An Electromagnetic Screening Region

To get some of these answers, the Oak Ridge-PSC team turned to LSMS (the locally self-consistent multiple scattering method), powerful software they developed to simulate the quantum properties of solid-state materials. When implemented at PSC in 1998 (on the Cray T3E), LSMS broke the teraflop barrier. It was the first research software (as opposed to benchmark codes) to sustain performance over a teraflop (a trillion computations a second), an achievement that won the 1998 Gordon Bell Prize for high-performance computing.

On the XT3, running on 2,048 processors, LSMS zooms at over eight teraflops, more than 80 percent of the XT3's theoretical peak. “A powerful innovation of LSMS is its linear scaling,” says Stocks. “As the number of atoms increases, computing time increases by only the same multiple.” Without the innovations of LSMS, a realistically sized particle of tens-of-thousands of atoms would be too large to simulate. With a conventional approach, the amount of computing increases by the number of atoms cubed (N^3) — so that as the particle size changes, for instance, from 1,000 to 10,000 atoms, the computing would take 1,000 (10^3) times as long, rather than, as with LSMS, only ten times.

“Quantum-mechanical calculations are very time-consuming,” says Stocks, “even on big computers. What we've done with LSMS is develop methods that allow you to do calculations for a sufficient number of atoms so the nanoparticle that the theory people talk about gets very close to the size that the experimentalists can make and measure.”

In 2005, Stocks, Wang and colleagues used LSMS to carry out one of the first projects on PSC's then newly installed XT3. They calculated the electronic and magnetic structure of an iron nanoparticle embedded in an iron-aluminide matrix, a total of 16,000 atoms. This was the first quantum-based calculation of a physical system several nanometers in scale, and it successfully laid the groundwork for their next simulation.

The 2005 calculations were limited by an assumption that the magnetic moments for each atom of the nanoparticle were aligned in the same direction. “In reality,” says Yang, “because of surrounding materials, that won't be the case.” This year, taking the next step, they simulated an iron-platinum nanoparticle — at three different sizes, 2.5, 3.86 and 5.0 nanometers — in a matrix of surrounding alloy, totaling in each case 14,400 atoms, without any a priori assumptions about alignment of the magnetic moments. They focused on iron-platinum, says Wang, because industry leaders are interested in its potential as a storage medium. The computations occupied 1,200 XT3 processors — 12 atoms assigned to each processor — running for more than 50 hours.

“Iron-platinum,” says Stocks, “is an important material because of its high magnetic anisotropy compared to most metals. This means it takes more energy for the magnetic moment to flip. As particle size gets smaller, this is more and more important.”

The result of the LSMS simulations is a detailed picture of a realistic nanoparticle's electronic and magnetic structure. Atoms in the particle interior settle into an organized pattern of essentially the same amount of net charge and magnetic moment as bulk crystalline iron-platinum. Iron atoms gain electrons from the platinum atoms to become negatively charged, and conversely the platinum atoms become positively charged.

The most interesting finding is a boundary region, just a few atoms in thickness, that isolates the nanoparticle from disruptive quantum effects from the surrounding alloy. In this region, about four angstroms, net charge and magnetic moment fluctuate from influence of the alloy. The four-angstrom width of this region was constant for all three simulations, suggesting that it is independent of particle size. “The perturbed surface of the particle,” says Stocks, “is like a fishbowl, separating the interior from outside effects. This is a piece of knowledge we didn't have before, and it will prove useful.”

This success points to more challenging tasks ahead. Nanotechnology — such as new discoveries in nanostructured “spintronic” devices, which may be able to harness the electron's spin as well as its charge — represent problems well beyond even the latest LSMS simulation. Meeting those challenges will require characterizing electronic and magnetic structures on scales approaching millions of atoms, rather tens-of-thousands, and the computational cost will rise by a factor of hundreds.

Eventually, simulations such as these will aid in developing the more powerful computers needed for the next round of simulations. “Without the magnetic storage advances to date,” says Stocks, “we wouldn't be able to do these calculations, which will help develop the next level of materials for the disk drives we'll need for the next level of calculations.”

“Ultimately,” says Wang, “the success of direct quantum mechanical simulation of nanostructured electronic devices relies on the advent of petaflop computing technology.”

For more information, including graphics, visit http://www.psc.edu/science/2006/nano.html.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire