HPC Gets Virtual; AMD Gets Graphic

By Michael Feldman

October 27, 2006

The problem is a well understood one: Microprocessor performance has outstripped data communication performance, which limits performance of data-intensive applications on standard cluster architectures. The temptation is to scale the cluster out even more, but this yields diminishing returns since the imbalance between the CPU and interconnects scales as well. It's like trying to make a car go faster by adding more valves to the engine.

Three OEM start-ups — Fabric7, PANTA System and Liquid Computing — are attacking the problem with scale-out commodity architectures and each has come up with a compelling design. In August, we focused on Fabric7's solution, and last week, PANTA Systems' new offering. In this week's issue, we spotlight Liquid Computing via an interview with the CEO and co-founder, Brian Hurley. Their new product is being announced for general availability next week.

Although the three companies have come up with rather different architectures, they are employing similar approaches. But you wouldn't guess that talking with them. In my conversations with the trio over the past few months, each tried to distance its solution from the other two. And while the three designs are very different, the basic technology is similar.

The common piece in the solution is to use HyperTransport (HT) technology to control allocation of hardware resources (CPUs, I/O, memory, and network communication) at the physical level. Each vendor provides a software interface that enables the user to dynamically create or dissolve HT communication links to various resources. This allows the user to more easily balance data bandwidth requirements with computing resources. With today's HT technology and AMD dual-core processors, an 8-way (core) SMP is possible. In 2007, the next generation of technology will allow for a 32-way SMP configuration, and a year after that, 128-way systems.

The other common architectural element involves just adding more data pipes in the machine, which helps to address the traditional imbalance in computation versus communication.

The capability to create designer SMP nodes from a common pool of highly connected hardware seems pretty novel. But virtualization via hardware is an established concept. Mainframes have been doing hard partitioning for years. But users pay a lot for this flexibility. With the advent of standard HyperTransport technology, this capability is now available to commodity AMD processor-based systems. Offering resource virtualization — and by extension, reliability — with industry standard parts challenges the big UNIX and Linux machines used for data-intensive enterprise computing. At the same time, it provides a more flexible design to fixed-architecture clusters and offers an interesting alternative for high performance technical computing users.

While virtualization is already well-established in the enterprise, its adoption into HPC will require some re-education. The problem here is that the term has become stigmatized to suggest that it comes with a performance penalty — a big no-no in the HPC culture. This is because conventional virtualization solutions in the enterprise involve a software layer that consumes CPU cycles. The HyperTransport-based solution avoids this particular drawback by establishing hardware resources at the physical layer.

Using virtualization and faster interconnects to make a more flexible commodity-based computing system has a lot of appeal. According to Liquid Computing, IDC believes that about half of the potential market for HPC clusters are held back because of some of the issues that an interconnect-centric architecture addresses. Being able to improve manageability by moving away from the departmentalization of clusters across a company towards a more consolidated infrastructure is something many large enterprise HPC users could benefit from. For that half of the cluster market, the classic enterprise RAS (Reliability, Availability and Serviceability) features are highly valued. And the consolidation of resources has the added benefit of reducing energy, cooling and space requirements.

Because of all the advantages of this type of scalable architecture, the market opportunities span technical computing, high performance enterprise computing, IT outsourcing/ASP, and telecom OEMs. The three vendors are feeling their way into these markets. Currently, Fabric7 is concentrating its efforts on the enterprise market, but is keeping an eye on HPC. PANTA Systems seems to be going after both the enterprise and HPC markets from the get-go. Liquid Computing, while initially targeting HPC, appears to want to use that sector as a springboard to a broader IT market.

With the merging of HPC with enterprise computing, it's a confusing time for both vendors and users. Andy Church, VP of Marketing at Liquid Computing, reported that in conversations they've had with IDC's Earl Joseph, the analyst confirmed the notion that there is a gray area between traditional high performance technical computing and enterprise IT outsourcing. This is reflected by the range of users interested in Liquid Computing's offering. The company's early adopters include customers in the enterprise technical computing, ASP, IT outsourcing and telecommunications OEM markets. For vendors like these, it's becoming more difficult to talk about enterprise computing and HPC as separate markets. “Our perspective is that those worlds are merging,” said Church.

—–

AMD + ATI = Fusion

It's AMD's fault. I vowed to stop writing about GPUs for at least a few issues. But with this week's announcement by AMD to build integrated CPU-GPU processors based on x86 cores and ATI GPU technology, I'm forced to add a few more thoughts on the topic.

The news of this hybrid processor initiative came on the same day that the merger of the AMD and ATI was finalized. To me, this is like announcing plans for your first baby during your honeymoon, which suggests that the two companies were devising this idea during their early courtship. By the way, AMD gets to be the groom in this metaphor since it will keep its name. ATI gets subsumed into AMD, website and all.

Without going into much detail in the announcement, AMD declared its plans to create a new class of x86 processor that integrates CPUs and GPUs at the silicon level with a design initiative called “Fusion.” The new processors will target all computing platforms currently supported by AMD, including laptops, desktops, workstations and servers, as well as consumer electronics. According to the company, the first Fusion processors will come to market in late 2008 or early 2009. In that time frame, the use of 45nm process technology will allow enough room on the die for large GPUs and CPUs to co-mingle and do so within a reasonable thermal envelope.

Compared to separate CPU and GPU device configurations, integrating the two types of computing engines into one chip should yield much better performance and performance-per-watt for applications using 3D graphics, digital media processing and high performance computing. Application-wise, that's a pretty big tent. But it gives you a good sense of where AMD thinks IT growth is going to occur.

This presents an interesting challenge for rival Intel. Basically its choices are:

  • Buy NVIDIA for their GPU technology. An increasingly unlikely event, given that neither of the two companies seems interested in such an arrangement.
  • Morph its own graphics division to produce higher-end devices. An expensive proposition, but cheaper than buying NVIDIA.

  • Beef up the native x86 Streaming SIMD Extensions (SSE) capability to compete with GPU capability. Maybe a more likely scenario, but a less flexible approach overall.

  • Ignore the trend and hope GPUs aren't the “next big thing” in general-purpose processing. The riskiest choice of all.

In attempting to side-step Intel, AMD is betting its future on this new vision of CPU-GPU computing. AMD's track record for redefining processor architectures is pretty impressive. When the company took the x86 into the 64-bit space in 2003, Intel was forced to follow. AMD's development and use of the HyperTransport technology and the on-chip memory controller provided a sound basis for multi-core scalabilty, and is expected to be duplicated by Intel with their CSI bus and their processor-based memory controller. Will history repeat itself once again?

—–

As always, comments about HPCwire are welcomed and encouraged. Write to me, Michael Feldman, at [email protected].

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire