Bioinformatics Lab Pursues Personalized Drug Treatments

By Nicole Hemsoth

November 3, 2006

As bioinformatics becomes an indispensable tool for performing advanced research into the origins and treatment of disease, more labs, both commercial and non-commercial, are investing in high performance computing platforms to help speed drug discovery. The Computational Bioinformatics and Bioimaging Laboratory (CBIL) at Virginia Tech is one such organization. The lab is hosted by the school's Advanced Research Institute (ARI), a group devoted to multidisciplinary scientific research.

Featured Podcast

CBIL is also a participant of the cancer Biomedical Informatics Grid, or caBIG (http://cabig.nci.nih.gov), which is a voluntary network connecting individuals and institutions to enable the sharing of data and tools, creating a World Wide Web of cancer research. The caBIG software platform enables U.S. cancer researchers to analyze their molecular expression data and provides the research community access to a federated Grid of informatics tools. The Grid also provide access to data from the whole community, allowing for more comprehensive research. The goal is to speed the delivery of innovative approaches for the prevention and treatment of cancer.

CBIL represents one of the emerging trends in medical research — that of the specialized bioinformatics provider. Virginia Tech does not have a medical university, so CBIL partners with other institutions such as Georgetown Medical Center, Johns Hopkins University, NIH and local hospitals. These institutions offer their medical resources and raw data, while CBIL provides the computer and bioinformatics expertise to extract useful knowledge from that data.

Research at CBIL focuses on data modeling and molecular analysis of diseases such as cancer (breast, prostate and ovarian), muscular dystrophy and cardiovascular diseases. The lab performs a technique called “molecular classification” to qualify various diseases. This is accomplished by applying large-scale computational techniques to identify biomolecular markers associated with a disease state. The research allows scientists to determine how specific drugs affect those markers.

“We hope that over time these markers will serve as indicators for diagnosis as well as prognosis, which will help in drug discovery and novel therapies,” says Dr. Saifur Rahman, director of the Advanced Research Institute. “And if we are successful in getting better drug discovery, we'll be able to treat a wider variety of cancers — hopefully more efficiently.”

According to Dr. Rahman, the technology that has made this type of medical research possible has really just emerged in the last five to ten years. He says there are three technologies that are fundamental to this new model:

  1. Personalized Molecular Profiling: Based on their genetic makeup, their physical condition and their environment, individuals are affected by diseases differently and respond differently to identical therapies. The profiling strategy is to identify disease subtypes within a heterogenous disease type. This will help to enable personalized drug therapies to be developed.
  2. Computational Systems Biology: Computer modeling and simulation is being used to replace laboratory experiments. By replacing physical experimentation with virtual experiments, a much wider range of “what if” investigations can be attempted. This technology is especially useful in trying to identify the most likely disease pathways.
  3. Biomedicial Imaging: Advanced visualization is providing a powerful tool for in vitro disease detection and diagnosis.

At CBIL the computing infrastructure that supports this work consists of a 16-node HP cluster, running Microsoft's Windows Compute Cluster Server (CCS) 2003 as the cluster management platform. The lab was one of the early adopters of CCS, which was released for general availability in August of 2006. Prior to the cluster solution, CBIL ran the bioinformatics applications on several single-node servers, distributing the jobs across them. According to Dr. Rahman, this required much more prep time, since it involved dividing the computational work into pieces and then reconstructing them after the results were obtained.

The server cluster enabled a more efficient computational model. CBIL recognized an 85 to 90 percent reduction in run times on two key applications, the Robust Biomarker Discovery and Predictor Performance Estimation, when compared to the single-node server set-up. In addition, the use of CCS allowed the researchers to remain in the familiar Windows environment, allowing for a comfortable transition to a parallel computing platform.

The advanced technology being used at CBIL provides a new model for medical research. In contrast to monolithic “magic bullet” approaches to cancer and other life-threatening diseases, molecular classification provides a discovery pathway for truly personalized medicine. The ability to qualify differences in drug responses on an individual basis will make it possible to find more effective drugs treatments. And the use of high performance computing is enabling this research to progress at a much faster rate than ever before.

“HPC will allow us to analyze more closely and in finer detail such patient responses to different drug regimes,” explains Dr. Rahman. “But the challenge will still remain as to how we interpret the data we get from our high performance computers.”

—–

To hear the whole story behind the Computational Bioinformatics and Bioimaging Laboratory research work, listen to our HPCwire podcast interview with Dr. Saifur Rahman at http://www.taborcommunications.com/hpcwire/podcasts/microsoft/index.html. For additional background information about the lab, visit http://www.cbil.ece.vt.edu/.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pressing needs and hurdles to widespread AI adoption. The sudde Read more…

Quantinuum Reports 99.9% 2-Qubit Gate Fidelity, Caps Eventful 2 Months

April 16, 2024

March and April have been good months for Quantinuum, which today released a blog announcing the ion trap quantum computer specialist has achieved a 99.9% (three nines) two-qubit gate fidelity on its H1 system. The lates Read more…

Mystery Solved: Intel’s Former HPC Chief Now Running Software Engineering Group 

April 15, 2024

Last year, Jeff McVeigh, Intel's readily available leader of the high-performance computing group, suddenly went silent, with no interviews granted or appearances at press conferences.  It led to questions -- what's Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Institute for Human-Centered AI (HAI) put out a yearly report to t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Computational Chemistry Needs To Be Sustainable, Too

April 8, 2024

A diverse group of computational chemists is encouraging the research community to embrace a sustainable software ecosystem. That's the message behind a recent Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire