Bioinformatics Lab Pursues Personalized Drug Treatments

By Nicole Hemsoth

November 3, 2006

As bioinformatics becomes an indispensable tool for performing advanced research into the origins and treatment of disease, more labs, both commercial and non-commercial, are investing in high performance computing platforms to help speed drug discovery. The Computational Bioinformatics and Bioimaging Laboratory (CBIL) at Virginia Tech is one such organization. The lab is hosted by the school's Advanced Research Institute (ARI), a group devoted to multidisciplinary scientific research.

Featured Podcast

CBIL is also a participant of the cancer Biomedical Informatics Grid, or caBIG (http://cabig.nci.nih.gov), which is a voluntary network connecting individuals and institutions to enable the sharing of data and tools, creating a World Wide Web of cancer research. The caBIG software platform enables U.S. cancer researchers to analyze their molecular expression data and provides the research community access to a federated Grid of informatics tools. The Grid also provide access to data from the whole community, allowing for more comprehensive research. The goal is to speed the delivery of innovative approaches for the prevention and treatment of cancer.

CBIL represents one of the emerging trends in medical research — that of the specialized bioinformatics provider. Virginia Tech does not have a medical university, so CBIL partners with other institutions such as Georgetown Medical Center, Johns Hopkins University, NIH and local hospitals. These institutions offer their medical resources and raw data, while CBIL provides the computer and bioinformatics expertise to extract useful knowledge from that data.

Research at CBIL focuses on data modeling and molecular analysis of diseases such as cancer (breast, prostate and ovarian), muscular dystrophy and cardiovascular diseases. The lab performs a technique called “molecular classification” to qualify various diseases. This is accomplished by applying large-scale computational techniques to identify biomolecular markers associated with a disease state. The research allows scientists to determine how specific drugs affect those markers.

“We hope that over time these markers will serve as indicators for diagnosis as well as prognosis, which will help in drug discovery and novel therapies,” says Dr. Saifur Rahman, director of the Advanced Research Institute. “And if we are successful in getting better drug discovery, we'll be able to treat a wider variety of cancers — hopefully more efficiently.”

According to Dr. Rahman, the technology that has made this type of medical research possible has really just emerged in the last five to ten years. He says there are three technologies that are fundamental to this new model:

  1. Personalized Molecular Profiling: Based on their genetic makeup, their physical condition and their environment, individuals are affected by diseases differently and respond differently to identical therapies. The profiling strategy is to identify disease subtypes within a heterogenous disease type. This will help to enable personalized drug therapies to be developed.
  2. Computational Systems Biology: Computer modeling and simulation is being used to replace laboratory experiments. By replacing physical experimentation with virtual experiments, a much wider range of “what if” investigations can be attempted. This technology is especially useful in trying to identify the most likely disease pathways.
  3. Biomedicial Imaging: Advanced visualization is providing a powerful tool for in vitro disease detection and diagnosis.

At CBIL the computing infrastructure that supports this work consists of a 16-node HP cluster, running Microsoft's Windows Compute Cluster Server (CCS) 2003 as the cluster management platform. The lab was one of the early adopters of CCS, which was released for general availability in August of 2006. Prior to the cluster solution, CBIL ran the bioinformatics applications on several single-node servers, distributing the jobs across them. According to Dr. Rahman, this required much more prep time, since it involved dividing the computational work into pieces and then reconstructing them after the results were obtained.

The server cluster enabled a more efficient computational model. CBIL recognized an 85 to 90 percent reduction in run times on two key applications, the Robust Biomarker Discovery and Predictor Performance Estimation, when compared to the single-node server set-up. In addition, the use of CCS allowed the researchers to remain in the familiar Windows environment, allowing for a comfortable transition to a parallel computing platform.

The advanced technology being used at CBIL provides a new model for medical research. In contrast to monolithic “magic bullet” approaches to cancer and other life-threatening diseases, molecular classification provides a discovery pathway for truly personalized medicine. The ability to qualify differences in drug responses on an individual basis will make it possible to find more effective drugs treatments. And the use of high performance computing is enabling this research to progress at a much faster rate than ever before.

“HPC will allow us to analyze more closely and in finer detail such patient responses to different drug regimes,” explains Dr. Rahman. “But the challenge will still remain as to how we interpret the data we get from our high performance computers.”

—–

To hear the whole story behind the Computational Bioinformatics and Bioimaging Laboratory research work, listen to our HPCwire podcast interview with Dr. Saifur Rahman at http://www.taborcommunications.com/hpcwire/podcasts/microsoft/index.html. For additional background information about the lab, visit http://www.cbil.ece.vt.edu/.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

Nvidia Appoints Andy Grant as EMEA Director of Supercomputing, Higher Education, and AI

March 22, 2024

Nvidia recently appointed Andy Grant as Director, Supercomputing, Higher Education, and AI for Europe, the Middle East, and Africa (EMEA). With over 25 years of high-performance computing (HPC) experience, Grant brings a Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Houston We Have a Solution: Addressing the HPC and Tech Talent Gap

March 15, 2024

Generations of Houstonian teachers, counselors, and parents have either worked in the aerospace industry or know people who do - the prospect of entering the fi Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire