Water, Water Everywhere

By Trish Barker

December 15, 2006

It's a fact you probably learned in elementary school: more than 70 percent of the earth's surface is water. Lakes, ponds, streams, rivers, oceans, and seas form a vast, complex system that is both affected by and profoundly affects our lives. Rising populations and rapid urbanization raise concerns about maintaining adequate supplies of potable water; agriculture and industry rely on water and also produce pollution that alters ecosystems; and in countless other ways water is at the heart of challenging environmental, economic, and social dilemmas.

CLEANER, the Collaborative Large-Scale Engineering Analysis Network for Environmental Research, has been launched by the National Science Foundation to address the challenges of understanding this complex world of water. The goal of CLEANER is to bring together sensors, data management and mining techniques, and modeling to enable scientists and engineers to collect, integrate, and analyze data and to better collaborate and share information regardless of geographic boundaries.

“To study and understand the state of water in the United States, we will have to use many types of data that have different scales, units, formats, quality, and levels of uncertainty,” explains NCSA's Barbara Minsker, principal investigator of the CLEANER Project Office, which is charting the way forward for the complex, multi-year project. “Creating cyberinfrastructure that helps our community find, obtain, transform, analyze, and assimilate these data into many types of models is both a great challenge and a great opportunity.”

NCSA is taking a lead role in developing a cyberenvironment to support both CLEANER research and the CLEANER planning process. Cyberenvironments integrate distributed computing and data resources–including scientific and engineering applications, graphical user interfaces and portals for easy interaction with the applications, workflow and collaboration software, integrated data analysis and visualization capabilities — into end-to-end scientific processes, providing a boost in productivity.

Components of the cyberenvironment

NCSA is developing four integrated prototype technologies to demonstrate the potential power of a cyberenvironment to support CLEANER and other environmental projects.

The four components of this prototype cyberenvironment are:

1. The CyberCollaboratory, a Web portal to allow sharing of resources, models, data, and ideas. Using the CyberCollaboratory, individuals who are separated by geographic distance can collaborate in a common digital lab, sharing knowledge and information, analyzing data, and solving problems.

“The CyberCollaboratory provides an infrastructure for integrating different services,” explains Yong Liu, a senior research scientist at NCSA and one of the CyberCollaboratory developers.

From this portal, researchers can access tools and data, such as an oil spill simulator that uses data housed at the Shoreline Environmental Research Facility in Texas or the Streamflow Analyst system developed at Utah State University. In addition, the CyberCollaboratory provides communication tools — including chat services, message boards, document repositories, and videoconferencing–that allow distributed teams to work as seamlessly as those sharing the same physical space.

The CyberCollaboratory is already being used by several communities, including researchers studying the Neuse River in North Carolina and scientists investigating coastal waters. The CyberCollaboratory also is used as part of the CLEANER planning process; during the CLEANER all-hands meeting in March 2006, more than 200 users logged into the cybercollaboratory to share documents, discuss drafts, chat about planning issues, etc.

“We're definitely using the CyberCollaboratory on a daily basis,” says Jami Montgomery, executive director of the CLEANER project office.

2. The CyberIntegrator, which provides a mechanism for easy integration of heterogeneous software tools to support modeling and analysis of complex environmental systems. Workflows execute a sequence of tasks on one or several local or remote processors – for example, obtaining data from remote sensors, transforming data to prepare it for analysis, performing analysis or modeling, or visualizing results. Meta-workflows allow heterogeneous workflows and software tools, often created by different users using multiple software technologies, to be linked and executed within a user-friendly, interactive system while using all available computational resources.

“The idea behind meta-workflow is that most workflow tools expect you to use a single tool, but in our community, people are already using multiple tools,” Minsker says. The CyberIntegrator allows researchers to bring together heterogeneous tools in a single interface.

3. The Metadata Repository, which stores information on the activities in each component of the cyberenvironment; the system constructs statements relating the names, datasets, tools, and documents as subjects and objects that are captured as provenance graphs. This information can then be used by other tools to provide coordination, alerts, subscriptions, and knowledge networking.

4. CI-Know (Cyber Infrastructure Knowledge Networks on the Web), a tool that supports social and knowledge networking. CI-KNOW mines the information captured in the metadata repository to develop customized recommendations for users, guiding them to people, documents, data, images, tools, and workflows that might be helpful to them. (see “NCSA builds social networking tools” in this issue of Access).

As development of the cyberenvironment continues, an Event Broker will be integrated with these technologies. This will allow events in the cyberenvironment (such as the acquisition of new data from certain sensors or with certain values) to trigger execution of specific meta-workflows (such as real-time modeling).

Cyberenvironment in action

CLEANER researchers across the country are already envisioning how the cyberenvironment will enable new avenues of research.

For researchers monitoring hypoxia (oxygen depletion) in Corpus Christi Bay, for example, it's currently impossible to adapt their efforts to unfolding events. Manual sampling should be increased when the possibility of hypoxia is high, but the researchers cannot integrate the diverse sensor data (some downloaded only once a week) and models to predict when they should send people into the field to collect samples.

To address this need, the water research cyberenvironment is being developed to enable near real-time adaptive monitoring. The CyberCollaboratory will alert researchers when hypoxic conditions are expected. Scientists could then discuss the predictions using the portal's chat and message board features, developing a plan to step up their data-gathering efforts. The data collected from the manual sampling effort could then be transmitted back to the cyberenvironment's data store, perhaps triggering simulations and models via the CyberIntegrator. And then these results could also be discussed through the CyberCollaboratory.

“This type of end-to-end system will create a new paradigm for environmental research,” says Minsker, “allowing interdisciplinary teams to collaborate to address complex issues.”

This research is supported by the National Science Foundation and the Office of Naval Research.

For further information visit http://cleaner.ncsa.uiuc.edu.

—–

Article provided courtesy of NCSA

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire