Water, Water Everywhere

By Trish Barker

December 15, 2006

It's a fact you probably learned in elementary school: more than 70 percent of the earth's surface is water. Lakes, ponds, streams, rivers, oceans, and seas form a vast, complex system that is both affected by and profoundly affects our lives. Rising populations and rapid urbanization raise concerns about maintaining adequate supplies of potable water; agriculture and industry rely on water and also produce pollution that alters ecosystems; and in countless other ways water is at the heart of challenging environmental, economic, and social dilemmas.

CLEANER, the Collaborative Large-Scale Engineering Analysis Network for Environmental Research, has been launched by the National Science Foundation to address the challenges of understanding this complex world of water. The goal of CLEANER is to bring together sensors, data management and mining techniques, and modeling to enable scientists and engineers to collect, integrate, and analyze data and to better collaborate and share information regardless of geographic boundaries.

“To study and understand the state of water in the United States, we will have to use many types of data that have different scales, units, formats, quality, and levels of uncertainty,” explains NCSA's Barbara Minsker, principal investigator of the CLEANER Project Office, which is charting the way forward for the complex, multi-year project. “Creating cyberinfrastructure that helps our community find, obtain, transform, analyze, and assimilate these data into many types of models is both a great challenge and a great opportunity.”

NCSA is taking a lead role in developing a cyberenvironment to support both CLEANER research and the CLEANER planning process. Cyberenvironments integrate distributed computing and data resources–including scientific and engineering applications, graphical user interfaces and portals for easy interaction with the applications, workflow and collaboration software, integrated data analysis and visualization capabilities — into end-to-end scientific processes, providing a boost in productivity.

Components of the cyberenvironment

NCSA is developing four integrated prototype technologies to demonstrate the potential power of a cyberenvironment to support CLEANER and other environmental projects.

The four components of this prototype cyberenvironment are:

1. The CyberCollaboratory, a Web portal to allow sharing of resources, models, data, and ideas. Using the CyberCollaboratory, individuals who are separated by geographic distance can collaborate in a common digital lab, sharing knowledge and information, analyzing data, and solving problems.

“The CyberCollaboratory provides an infrastructure for integrating different services,” explains Yong Liu, a senior research scientist at NCSA and one of the CyberCollaboratory developers.

From this portal, researchers can access tools and data, such as an oil spill simulator that uses data housed at the Shoreline Environmental Research Facility in Texas or the Streamflow Analyst system developed at Utah State University. In addition, the CyberCollaboratory provides communication tools — including chat services, message boards, document repositories, and videoconferencing–that allow distributed teams to work as seamlessly as those sharing the same physical space.

The CyberCollaboratory is already being used by several communities, including researchers studying the Neuse River in North Carolina and scientists investigating coastal waters. The CyberCollaboratory also is used as part of the CLEANER planning process; during the CLEANER all-hands meeting in March 2006, more than 200 users logged into the cybercollaboratory to share documents, discuss drafts, chat about planning issues, etc.

“We're definitely using the CyberCollaboratory on a daily basis,” says Jami Montgomery, executive director of the CLEANER project office.

2. The CyberIntegrator, which provides a mechanism for easy integration of heterogeneous software tools to support modeling and analysis of complex environmental systems. Workflows execute a sequence of tasks on one or several local or remote processors – for example, obtaining data from remote sensors, transforming data to prepare it for analysis, performing analysis or modeling, or visualizing results. Meta-workflows allow heterogeneous workflows and software tools, often created by different users using multiple software technologies, to be linked and executed within a user-friendly, interactive system while using all available computational resources.

“The idea behind meta-workflow is that most workflow tools expect you to use a single tool, but in our community, people are already using multiple tools,” Minsker says. The CyberIntegrator allows researchers to bring together heterogeneous tools in a single interface.

3. The Metadata Repository, which stores information on the activities in each component of the cyberenvironment; the system constructs statements relating the names, datasets, tools, and documents as subjects and objects that are captured as provenance graphs. This information can then be used by other tools to provide coordination, alerts, subscriptions, and knowledge networking.

4. CI-Know (Cyber Infrastructure Knowledge Networks on the Web), a tool that supports social and knowledge networking. CI-KNOW mines the information captured in the metadata repository to develop customized recommendations for users, guiding them to people, documents, data, images, tools, and workflows that might be helpful to them. (see “NCSA builds social networking tools” in this issue of Access).

As development of the cyberenvironment continues, an Event Broker will be integrated with these technologies. This will allow events in the cyberenvironment (such as the acquisition of new data from certain sensors or with certain values) to trigger execution of specific meta-workflows (such as real-time modeling).

Cyberenvironment in action

CLEANER researchers across the country are already envisioning how the cyberenvironment will enable new avenues of research.

For researchers monitoring hypoxia (oxygen depletion) in Corpus Christi Bay, for example, it's currently impossible to adapt their efforts to unfolding events. Manual sampling should be increased when the possibility of hypoxia is high, but the researchers cannot integrate the diverse sensor data (some downloaded only once a week) and models to predict when they should send people into the field to collect samples.

To address this need, the water research cyberenvironment is being developed to enable near real-time adaptive monitoring. The CyberCollaboratory will alert researchers when hypoxic conditions are expected. Scientists could then discuss the predictions using the portal's chat and message board features, developing a plan to step up their data-gathering efforts. The data collected from the manual sampling effort could then be transmitted back to the cyberenvironment's data store, perhaps triggering simulations and models via the CyberIntegrator. And then these results could also be discussed through the CyberCollaboratory.

“This type of end-to-end system will create a new paradigm for environmental research,” says Minsker, “allowing interdisciplinary teams to collaborate to address complex issues.”

This research is supported by the National Science Foundation and the Office of Naval Research.

For further information visit http://cleaner.ncsa.uiuc.edu.

—–

Article provided courtesy of NCSA

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire