Quantum Computing Steps Out of the Research Lab

By Michael Feldman

February 16, 2007

On Tuesday at the Computer History Museum in Mountain View, California, a Canadian tech startup called D-Wave demonstrated a prototype of a commercial quantum computer. The company claims their 16-qubit system is by far the most powerful quantum computer ever built and the first ever to run commercial applications. The purpose of the demonstration was to provide “proof-of-concept” for upcoming commercial products.

While many researchers have estimated that quantum devices will not be commercially viable for another 20 to 50 years, D-Wave founder and CTO Geordie Rose has aggressively pursued his dream of developing a commercial device in a much shorter timeframe. In 1999, he formed D-Wave to begin his pursuit of superconductor-based quantum computing. A superconductor implementation was chosen because unlike other QC approaches, such as quantum dots or optical circuits, it does not rely on the development of future technologies.

Unlike bits in digital computers, quantum computers contain quantum bits (qubits), which can exist as 0, 1, or a superposition of both. The property of superposition is at the heart of quantum computing.

The D-Wave system relies on a technology called adiabatic quantum computing to do its work. The hardware consists of a 4×4 array of magnetic flux qubits, which are implemented as niobium rings. At temperatures close to absolute zero they become superconducting, enabling them to behave quantum mechanically. Because of the quantum mechanical behavior, the 16-qubit system is able to perform 64K calculations simultaneously.

The demonstration used the D-Wave prototype system, called Orion, running remotely at the company's headquarters in Burnaby, Canada. Three different applications were put through their paces. The first was a pattern matching application used to search a databases of molecules. The second was a seating plan application, where wedding seat assignments were subject to a number of constraints. The third application demonstrated solutions to the Suduko puzzle.

The algorithms were adapted such that they were recast as combinatorial graphs. A conventional digital preprocessor ran the applications, but the graphs were sent to the QC hardware, where they were distributed across the qubit array.

If this sounds like a lot of trouble for searching a database or assigning some seats, the real payoff comes when the system is scaled up to thousands of qubits. Quantum computers of this size should be able to solve problems that cannot be solved by any conventional computer, no matter how large powerful.

“There are problems out there that just don't scale polynomially, they scale exponentially,” says D-Wave CEO Herb Martin.

He is referring to NP-complete problems, which require examining a very large number of possibilities. For these types of problems, computation time on a conventional digital computer goes up exponentially as the number of combinations increases. An example is the subset sum problem, which is important to cryptography. The problem may be stated as follows: for a given set of integers, does a subset of the numbers exist, which when added together, equals zero? For example, in the set {-7, -3, -2, 5, 8}, the subset {-3, -2, 5} is the solution. A digital computer would be able to determine this in a fraction of a second. However, if the given set of numbers grew to a couple of hundred elements, it would take billions of years for the computer to solve it. A quantum computer of reasonable size could solve it almost instantly.

Or could it? D-Wave's Geordie Rose admits that using quantum computers to achieve exact solutions to NP-complete problems is unproven. D-Wave's specific claim is that these systems will be able to derive very useful “approximate solutions” for such applications, where the problem does not require an exact solution.
 
Virtually any industry has applications that could make use of this capability. This applies to most real-world problems where the number of combinations limits how fast a conventional computer can generate a useful solution. Applications like protein folding, drug discovery, genomics, machine vision, security biometrics, quantitative finances, data mining, VLSI layout, nanoscale simulation, supply chain management, and many others can be re-cast as QC-native algorithms. All of these problems are currently being addressed with conventional computers, but the scale of the algorithm will always be limited by the digital nature of the computation.

This is not to suggest that conventional computers are doomed to extinction. The folks at D-Wave believe that quantum devices will augment digital computers, much as a hardware accelerator is used today. This seems to be a widely held view in the computing community.

“From a business perspective, I think that quantum computers are never going to completely displace classical supercomputers,” said Colin Williams, a senior QC researcher at JPL. “What I foresee is a sort of symbiotic relationship, where you have something akin to a quantum co-processor and the classical supercomputer would farm out specific questions for the quantum co-processor to answer; and then it would get the answer and incorporate that into its own ongoing computation.”

But despite this week's demonstration, the question of quantum computing's viability remains. There is certainly no shortage of D-Wave skeptics. QC researchers note that the company has not published their work in peer-reviewed journals, and have doubts that the company's offering represents true quantum computing. At the center of the controversy is whether adiabatic quantum computation is all it's cracked up to be. For the adiabatic model to work, the computation must be driven fast enough to give you the answer in a useful timeframe, but slow enough so as to maintain the adiabatic condition. Many believe that the process may not be feasible. The real proof point will be when a larger-qubit machine solves an NP-complete problem of sufficient size to demonstrate the expected quantum computing acceleration.

While the prototype demonstrated this week is not ready to do this, D-Wave has used this opportunity to get the word out that QC is not just something relegated to the research labs. According to CEO Herb Martin, the company is planning to release an online system in Q4 of 2007. This 32-qubit machine will be made available to the open source community to encourage users to port their applications to the company's platform. Beyond that, D-Wave intends to deliver a commercial 512-qubit machine in mid-2008 and a 1,024-qubit system by the end of that year. Stay tuned.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pressing needs and hurdles to widespread AI adoption. The sudde Read more…

Quantinuum Reports 99.9% 2-Qubit Gate Fidelity, Caps Eventful 2 Months

April 16, 2024

March and April have been good months for Quantinuum, which today released a blog announcing the ion trap quantum computer specialist has achieved a 99.9% (three nines) two-qubit gate fidelity on its H1 system. The lates Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Computational Chemistry Needs To Be Sustainable, Too

April 8, 2024

A diverse group of computational chemists is encouraging the research community to embrace a sustainable software ecosystem. That's the message behind a recent Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire