The End of Local Computing: A Remote Possibility?

By Michael Feldman

March 16, 2007

If, as Sun Microsystems claims, “The Network is the Computer,” then why do I have to buy a new computer every few years? I used to think it was inevitable that we would all be using thin clients instead of PCs to access computing. I still believe this will happen, but I'm not as sure as I used to be.

On the surface, it makes no sense that we use PCs for the majority of our computational needs. Most people will typically keep their computer's processor busy for only a few percent of the time during the day, and none at all during the night. (Even a datacenter that has not consolidated its servers with virtualization does better than that — usually between 5 and 15 percent utilization, depending on who you talk to.)

And then there's the effort required to constantly deal with updating the operating system and applications; keeping the computer free of viruses, malware, and other security threats; and making sure data is backed up on a regular basis. Some of this has been automated, but it's still rather annoying to be constantly reminded that you need to upgrade/update/repurchase the latest version of some piece of software or other. Imagine if we had to maintain our TVs this way.

There's also the inconvenience of having your files locally stored on a variety of machines, which may not be easily accessible to one another. If I want to work on the same document at home, at work, or if I'm on vacation, that usually involves an extra layer of software to deal with. Why bother with all this when the Internet can provide a simple online environment for distributed computing?

The Internet is the obvious platform for remote computing, but as of yet it does very little of that. Mostly it distributes data and performs simple transactions. There are some web-hosted Microsoft Office-type application suites beginning to appear (Sun's StarOffice, Google Apps, and Zoho), but most people continue to use their PC as a fat client to the Internet, preferring to do activities like word processing and constructing spreadsheets locally.

So what's holding up remote computing? The same factors that act as conservative influences throughout IT: software momentum and user habits.

The sheer mass of data files that people depend on are tied to applications that run mostly on personal computers — things like Word documents, Excel spreadsheets and PowerPoint presentations. People have become used to the look-and-feel of using those programs to do their work. It's no coincidence that many of the web-hosted Office-type applications mimic the actual Microsoft versions as much as possible.

The large foundation of software already targeted to the Windows operating system encourages new application development in the same environment. Not only are large numbers of developers already familiar with the Windows API, but whole libraries and other Windows-based software components can be reused to build or upgrade applications. In contrast, Internet-based software frameworks, like AJAX (Asynchronous JavaScript and XML), are just starting to develop momentum.

At the same time, there's a hardware battle going on between local computing and remote computing. Local computing is encouraged by less costly processors, which is indirectly being driven by Moore's Law. Remote computing is favored by faster networks and is driven by advances in optical fiber communication. On the face of it, networks should be winning. Using a performance per dollar criteria, Moore's Law is doubling transistor density every 18 months or so, while optical fiber technology is doubling its bandwidth every 9 months (according to a 2001 Scientific American report).

If you're not careful with your reasoning, you might conclude that it will be more efficient to distribute data around a network of processors than to compute with the same data on a local processor. But this ignores the fact that data-intensive workloads are limited by the speed at which you can feed bytes into the processor. The on-chip networks that connect memory to processor and CPUs to each other will always be faster than the external networks. It also ignores the hidden costs associated with building an external network infrastructure that can take advantage of faster bandwidth technology. It has to do with the cost of deployment.

Networks depend upon a host of supporting gear — routers, modems, switches, adapters, etc. — most of which you never see. That's because network infrastructure is a common resource; so larger organizations like corporations, business alliances, or governments must build them before individuals can use the bandwidth. For example, you might be able to buy a PC with Intel's newest 45nm processor technology within a year, and realize the performance benefits immediately (for that 2 percent of time you're actually using the chip). But when's the last time your Internet connection got faster?

Here's another way to look at it. A relatively small number of users in top tier government labs and datacenters have access to 10 gigabits per second bandwidth today. It will take years before access to this technology trickles down to everyday individuals. On the other hand, the latest level of CPU (and GPU) technology is available to everyone almost simultaneously.

So what does this all have to do with high-end computing? Plenty. A lot of the same influences that apply to personal IT also apply to HPC, namely, entrenched software and cultural habits. The dominance of Windows and Linux/UNIX software and the HPC user experience with clusters creates an environment which favors local computing, while the lack of standards in distributed computing APIs and user interfaces holds back potential growth in grid and utility computing.

Microsoft, in particular, is beginning to exploit its software stack as leverage into the HPC market. And it's a big lever. Windows platforms are ubiquitous, even in Linux/UNIX computing environments. The company's Windows Compute Cluster Server 2003 product is targeted for the deskside cluster crowd, most of whom already use Windows on their desktop workstations.

Microsoft reports that a recent survey (which they sponsored) indicates that the oil and gas industry would favor more localized technical computing power, favoring deskside clusters over datacenter machines. This doesn't mean that oil & gas professionals are control freaks. I would guess that similar results would be obtained for all HPC vertical markets: financial, bio/life sciences, entertainment, and so on.

Intel and AMD feed into this too. With their focus on creating volume processors, these companies end up designing hardware that targets personal computing environments. Intel's Terascale Program and associated RMS software (which we spotlight in this issue) seem destined for personal computing rather than the enterprise.

As you might expect, Sun Microsystems has a different take on this. They observe that the demand for computing is growing faster than processor performance. This, they say, will favor massively scaled out, but centralized, computing infrastructure, a la Google. At the Sun Analyst Summit in February, Greg Papadopoulos, CTO, EVP of R&D, presented this vision of computing in a presentation called “Redshift: The Explosion of Massive-Scale Systems”.

The idea Papadopoulos put forth was that since computational demands are growing faster than Moore's Law, infrastructure needs to be expanded, not just upgraded. He used HPC as a perfect example of an application category that has insatiable computational demands, and which is only limited by available money to spend on it. The best way to address this type of demand is through massively scaled computing systems that use virtualization and other technologies to maximize efficiencies of power usage, utilization, security and predictability. The centralized power grid is the analogy.

Papadopoulos believes we're approaching a phase change in IT, where the PC-based model will disappear. And according to him “when that cross-over point happens, it's going to be redefining for the industry.”

He could be right. But the best way to predict the future is to invent it. At some point, I would think that some company like Sun or Google, which has a big stake in this type of computing model, would develop and sell (or give away!) a general-purpose thin client.

Until then, I'll probably be in the market for a Vista machine (sigh).

—–

As always, comments about HPCwire are welcomed and encouraged. Write to me, Michael Feldman, at [email protected].

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Mystery Solved: Intel’s Former HPC Chief Now Running Software Engineering Group 

April 15, 2024

Last year, Jeff McVeigh, Intel's readily available leader of the high-performance computing group, suddenly went silent, with no interviews granted or appearances at press conferences.  It led to questions -- what's Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Institute for Human-Centered AI (HAI) put out a yearly report to t Read more…

Crossing the Quantum Threshold: The Path to 10,000 Qubits

April 15, 2024

Editor’s Note: Why do qubit count and quality matter? What’s the difference between physical qubits and logical qubits? Quantum computer vendors toss these terms and numbers around as indicators of the strengths of t Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips are available off the shelf, a concern raised at many recent Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announced its second fund targeting €200 million. The very idea th Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. In a way, Nvidia is the new Intel IDF, the hottest chip show Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Computational Chemistry Needs To Be Sustainable, Too

April 8, 2024

A diverse group of computational chemists is encouraging the research community to embrace a sustainable software ecosystem. That's the message behind a recent Read more…

Hyperion Research: Eleven HPC Predictions for 2024

April 4, 2024

HPCwire is happy to announce a new series with Hyperion Research  - a fact-based market research firm focusing on the HPC market. In addition to providing mark Read more…

Google Making Major Changes in AI Operations to Pull in Cash from Gemini

April 4, 2024

Over the last week, Google has made some under-the-radar changes, including appointing a new leader for AI development, which suggests the company is taking its Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

Leading Solution Providers

Contributors

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire