The Uncommodity Solution

By Michael Feldman

May 4, 2007

The current obsession with energy-efficient FLOPS in high performance computing systems has created a diversity of solutions in the last few years. The Cell processor and GPUs have been getting a lot of attention from the media, including yours truly. By offering hundreds of gigaflops at Wal-Mart prices, vendors and do-it-yourself HPC users are being tempted to experiment with these latest commodity accelerators.

With this as a backdrop, ClearSpeed has the unenviable task of offering floating point accelerators at $8000 a pop. Since high performance computing is the only market to which they aspire, the company lives in the relative anonymity of the HPC world. Not having the market breadth or sexiness of Cell processors, GPUs or FPGAs, ClearSpeed coprocessors are promoted on their technical prowess. If this were “Survivor,” ClearSpeed would have been kicked off the island a year ago. Fortunately this is reality IT, not reality TV.

Since the company was unveiling its new PCI Express-capable Advance board this week, along with some SDK and math library upgrades, I took the opportunity to get an update about the company's strategy to compete in a commodity-dominated industry. If you want to know more about ClearSpeed's new offerings, read their press release in this issue.

ClearSpeed does have an interesting tale to tell. One of the advantages of not being a commodity solution is not having to worry about consumer applications like PlayStations or PCs. ClearSpeed designs its coprocessors specifically for floating point speed and energy efficiency. In doing so, the company maintains it has the best performance/watt in the industry and it intends to keep that lead indefinitely.

What ClearSpeed offers today is a dual-coprocessor Advance board that tops out at 55 gigaflops (using a double-precision matrix multiplication benchmark). Each 10-watt CSX600 coprocessor provides 27.5 gigaflops, yielding 2.75 gigaflops/watt.

Compared to their commodity brethren, this might not seem like such a great feat. The latest NVIDIA GeForce 8800 GTX achieves 518.4 Gigaflops with 177 watts, yielding 2.93 gigaflops/watt. But the gigaflops in this case are single-precision FLOPS and are calculated for shader processing. Since there is no double-precision GPU on the market today (NVIDIA says it intends to offer one later this year), the comparison with the ClearSpeed offering is not yet relevant. AMD also has also not yet released a double-precision GPU product.

The Cell processor has a double-precision capability, but it's only a tenth or so of its single-precision performance. IBM is promising a much more capable double-precision version soon. Even the current version of the Cell processor provides a respectable 14.6 gigaflops of double-precision matrix multiplication with just 80 watts. This yields 0.18 gigaflops/watt, but that's less than a tenth of the performance of ClearSpeed's hardware.

FPGAs are another possibility for floating point. In general though, there's not enough real estate on the current implementations to allow for a lot of double-precision logic. At the present level of technology, you can squeeze between five to fifteen gigaflops on a single chip. But laying out the circuits to even do this requires a good deal of FPGA programming smarts. That doesn't keep HPC enthusiasts from trying though.

The fact that the CSX600 coprocessor is built on a 130nm process technology, while the GPUs, Cell chips, and the majority of FPGAs are built on 90nm, attests to ClearSpeed's skill in churning out the FLOPS with a relatively slow clock. The CSX600 contains 96 processing cores, which run at a rather modest 210 MHz.

Another advantage of the ClearSpeed coprocessors is accuracy. While no commercial FP device is fully “conformant” to the IEEE 754 floating point specification, ClearSpeed is compliant with the rounding conventions. On the other hand, while the Cell and GPUs are compatible with IEEE 754 floating point numerical formats, they don't do 754-type rounding. Values are just truncated in the hardware.

“When you think about their [GPUs and Cell processors] design criteria, which is to put pixels on a screen, whether it's for a Sony PlayStation or for graphics on a computer, it was certainly sufficient,” explained Peter ffoulkes, ClearSpeed's Director of Outbound Marketing. “But it's not sufficient when you're looking at some of the math applications, particularly for double-precision and high accuracy types of applications. When Cell and GPUs go to 64 bits, they may well chose to implement more of the IEEE 754 specification.”

“Even if they do implement everything properly, we feel that we're going to have a substantial advantage in performance/watt,” ffoulkes added. “They won't be able to get anywhere near [us].”

Hooking coprocessors into standard x86 servers can yield an interesting type of efficiency. ClearSpeed points out that by adding floating point horsepower in a server using a single Advance board, they were able to demonstrate a power reduction in the x86 component that made up for a significant chunk of the board's power consumption. In essence they were able to realize an extra 34 gigaflops of performance with just 6 additional watts of power compared to the base system — in this case an HP server with dual-core Xeon processors. Presumably this happened because the the Xeons could run a lot cooler once relieved of their floating point duties.

The company calls this the “Top Up” perspective, which sounds like a marketing ploy, but it does point to an extra efficiency that can be gained from accelerator add-ons. It's comparable to the sort of synergy you get with gas-electric hybrid cars, where the electric component improves the efficiency of the gas engine. After spending close to $50 to put 12 gallons into my car, I kind of wish ClearSpeed would start designing automobiles. High performance ones of course.

—–

As always, comments about HPCwire are welcomed and encouraged. Write to me, Michael Feldman, at [email protected].

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

Nvidia Appoints Andy Grant as EMEA Director of Supercomputing, Higher Education, and AI

March 22, 2024

Nvidia recently appointed Andy Grant as Director, Supercomputing, Higher Education, and AI for Europe, the Middle East, and Africa (EMEA). With over 25 years of high-performance computing (HPC) experience, Grant brings a Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Houston We Have a Solution: Addressing the HPC and Tech Talent Gap

March 15, 2024

Generations of Houstonian teachers, counselors, and parents have either worked in the aerospace industry or know people who do - the prospect of entering the fi Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire