TRIPS Processor Marches to a Different Drummer

By Michael Feldman

May 4, 2007

In the midst of the multicore frenzy that has enveloped processor design over the past several years, researchers at the University of Texas (UT) have been methodically working on a very different kind of chip architecture. With $20 million of funding, primarily from DARPA, the UT research team developed the Tera-op Reliable Intelligently adaptive Processing Systems (TRIPS) architecture. On Monday, the team, led by UT professors Doug Burger, Steve Keckler and Kathryn McKinley, unveiled the first TRIPS prototype.

Today, the commercial solution to high performance is to add more cores to general purpose processors (i.e., x86, Power, UltraSPARC) or use special processing units for acceleration (i.e., GPUs, the Cell processor, ClearSpeed boards). In contrast, TRIPS uses heavy-duty instruction-level concurrency to achieve high levels of performance. It does this via its EDGE ISA, which allows a compiler to specify the data dependencies during code generation. The rationale is that this frees the hardware from having to reconstruct these dependencies at runtime. More than that, a TRIPS processor is able to change its execution behavior based on the application profile, so that workloads requiring different levels of parallelism (instruction, data, and thread) may all be accommodated efficiently.

It is this polymorphic behavior that is of particular interest to DARPA. Currently the Department of Defense (DoD) builds numerous mobile computing systems that incorporate a vast range of custom ASICs, often alongside general-purpose commodity processors. In this type of environment, the workload is often volatile. The specialized and general-purpose processors become idle or stressed as the workload throttles up and down, reducing system efficiency. The DoD would love to find a solution that can approach the performance of a specialized processor, yet retain the ability to be used for many different types of applications.

This is not just a military notion. A polymorphic processor could be applied to any application that consisted of high performance heterogeneous workloads, embedded or otherwise. In HPC, the conventional answer to heterogeneity is to use different types of processors. For example, Cray's “Adaptive Supercomputing” strategy is to apply a variety of processors (vector, scalar, multithreading) that excel at different types of workloads. Other vendors are experimenting with hardware accelerators, like FPGAs or Cell processors, as add-ons to conventional HPC servers.

“We're trying to come up with a [common] substrate that would work well with many different types of applications — especially those without explicit concurrency built in,” explained Keckler.

The processor demonstrated at the University of Texas consisted of two TRIPS cores, each one capable of executing up to 16 instructions per clock cycle, from as many as 1024 in-flight instructions. The prototype was manufactured by IBM on 130nm technology and runs at 366 MHz. It achieves 12 gigaflops and consumes 45 watts at peak power.

A mere 12 gigaflops at 45 watts isn't going to turn many heads today. For comparison, a quad-core Xeon processor achieves 62 gigaflops at 120 watts. But the TRIPS prototype was implemented on process technology that's two generation behind the state-of-the-art and the TRIPS system design didn't bother to implement power saving circuitry such as clock gating, a common technology used to optimize processor power consumption.

On a 65nm process technology with appropriate clock gating, the TRIPS researchers expect much higher clock rates and lower power consumption. They believe that the performance per watt for this technology is going to be extremely competitive with current CISC and RISC offerings. Using the clock-neutral metric of instructions retired per clock cycle, the prototype has achieved between three and four times better performance than Intel's commercial Core 2 processors on a variety of application workloads, including signal processing, dense linear algebra, desktop and embedded.

“It is very promising,” said Burger. “If you can imagine a major company putting a full design team behind it, they could push it a lot further than we could. And where we are is already pretty good with a small academic team.”

One of the big advantages of exploiting instruction-level parallelism is a reduction of the memory wall problem — where processor performance overruns memory performance. Multicore, multithreading solutions exacerbate this problem by enabling more threads to compete for limited memory bandwidth. Typically each thread will access different data in the cache, putting more stress on the bandwidth of the memory system. Since TRIPS is able to keep up to 1024 instructions in flight, a lot of work can done while the next memory request completes. It's not that TRIPS has solved the memory wall problem, but speeding up the individual processors relieves some of pressure on the memory system.

“Our processor tends to be much more latency tolerant.” said Burger. “So if you have bandwidth burst issues, we can tolerate those and have fewer stalls, relative to more conventional architectures.”

The prototype demonstrated this week may be the first and last one developed without commercial involvement. Due to the economics of semiconductor manufacturing, it's become prohibitively expensive for an academic venture, even one backed by DARPA, to produce a lot of silicon. Thus the UT team is actively looking for commercial suitors. IBM, Intel, Sun and AMD would be the most likely candidates, although some of the embedded chip manufacturers may be tempted as well.

The hard-sell for TRIPS is going to be attracting chipmakers to take the technology into the commercial realm. Any company capable of introducing a new processor already has a large investment in their own architectures. And their customers have an even larger investment in the ISAs of those architectures. But the TRIPS researchers believe that a disruptive technology will be adopted if people feel enough pain. And in their view, multicore is going to be delivering that pain pretty quickly.

“What we're offering is a technology that requires an instruction set change,” said Burger. “And in a few generations, what the industry is going to be offering is a technology that requires a programming model and software change. Which is more painful?”

The UT team is already working on the next generation of the architecture. They say that the new version will be based on the EDGE ISA, but will be implemented with a new microarchitecture. One specific area the researchers are pursuing is scalable multithreading. What they would like to achieve is a processor with the flexibility to act like a fine-grained multithreaded architecture when you have lots of threads, and a really powerful single-threaded processor when you don't. With what they've learned with TRIPS, they believe they have a lot of room to explore some new approaches.

“As an architect, it's really exciting to be on the edge of the inflection point,” said Burger. “We're working on one approach; other people are working on others. It's a big fermenting stew right now and no one knows what's going to happen.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire