IBM Unveils Enterprise Stream Processing System

By Michael Feldman

June 22, 2007

On Tuesday at the Security Industry and Financial Market Association (SIFMA) Technology Management Conference in New York, IBM announced System S, a software framework that uses a stream processing model to support a new class of applications. The result of a $5 million initiative at IBM Research, System S is designed to perform real-time analytics using high-throughput data streams.

The company will initially aim this technology at Wall Street trading applications, but the system is generally applicable to all kinds of real-time intelligence gathering. Relevant domains include surveillance, manufacturing, inventory management, public health, and biological research, among others. At this point, the System S technology is more than a prototype, but less than a product. This week’s announcement is aimed at garnering interest from Wall Street firms that might want to partner with IBM to develop commercial applications.

The System S software is designed to run in a heterogeneous hardware environment, taking advantage of x86, Cell, Blue Gene, or even Power-based servers. Cell-based systems, in particular, appear to be a well-suited for these types of applications because of that processor’s natural abilities as a stream computing platform. Suitable platforms can range from a single CPU up to 10,000 servers. The initial version of System S is targeted to IBM BladeCenters running Red Hat or SUSE Linux. According to IBM, in larger configurations, System S is capable of processing in the neighborhood of a million messages per second, depending on the application behavior and the nature of the data streams.

The intention of the framework is to host applications that turn heterogeneous data streams into actionable intelligence. The source of such streams could be manufacturing sensors, television broadcasts, market exchange streams, phone conversations, video feeds, email traffic, and so on. Essentially, the system works by enabling different types of software processing elements (PE) or modules to be strung together to act on data streams. The system exposes the profile of each processing element to the others in the framework so they can interoperate. The software contains an “Omniscient Scheduler” that ensures the data pipelines between the PEs operate efficiently. A user hypothesis or query drives the application and specifies the kinds of data correlations to be performed.

For example, if one were searching for a certain subject matter in conversations being conducted over a secure telephone line, this would require a number of stream processing elements. The first step would be to pass the communication feed into a data decryption PE, which would produce decrypted audio. Then, using a speech recognition PE, the audio stream would be converted into text. Next, the text data would pass through a semantic analyzer PE to identify those conversations that contained content of interest. If one was processing many such conversations, the system could automatically focus on those that met the specified criteria and drop the remainder. A more complex application with additional data feeds could be accommodated by plugging in the appropriate PEs.

According to Nagui Halim, director of high performance stream computing at IBM, System S represents a significant departure from current intelligence extraction, which traditionally relies on fixed-format data that has been stored on a disk somewhere. This model can only provide a retrospective look a problem. By contrast, System S applications are able to take unstructured raw data and process it in real time. And rather than performing simple data mining or recreating a simulation of some well-defined structure or process, System S applications attempt to make correlations and generate some type of prediction. In addition, the system is supposedly capable of refining its behavior over time by learning from the successes and failures of past correlations.

“This is about what’s going to happen,” explains Halim. “The thesis is that there are many signals that foreshadow what will occur if we have a system that is smart enough to pick them up and understand them. We tend to think it’s impossible to predict what’s going to happen; and in many cases it is. But in other cases there is a lot of antecedent information in the environment that strongly indicates what’s likely to be occurring in the future.”

To Halim’s surprise, in his research he found that streaming data analytics was a much better tool than he expected for many classes of applications. He discovered that events are often very predictable if one examines the correct data. For example the occurrence of a “perfect storm” is the result of a number of more subtle conditions which build up over time that interact to produce a big event.

If successfully implemented, predictive systems certainly have a high value for a range of enterprises and government organizations. This is especially true in the financial services industry, where accurate forecasts of options and derivatives pricing can translate directly into profits. Being able to correlate market activity with the effects of qualitative data, like news events, would open up some interesting avenues for financial trading application. IBM envisions algorithmic trading engines connected to media feeds such as CNN and Al Jazeera to correlate news reports with financial market behavior. For example, an application could be set up to look for events that could precipitate an oil price spike in the next ten minutes.

An application could also be devised to search for rogue traders or money laundering activities. Traditionally this is accomplished by examining account histories and performing manual inspection of suspicious transactions. But this sort of retrospective analysis may allow the perpetrator to get way.

“Imagine if you had the ability to look at all the trading activity, just as you do today, and correlate that with other activity, like phone calls, email, and trading floor video feeds,” says Kevin Pleiter, director of global financial services sector at IBM. This, he says, could enable you to identify illegal trading patterns as they occur — or even before.

According to Pleiter, the financial industry is on an accelerating path of automating the trading process. During the past 10 years, the number of traders has been decreasing rapidly, while the number of trades is skyrocketing. This is due to the rise of algorithmic trading software and the use of advanced computing and network technologies to increase the pace of electronic transactions. By adding unstructured data into the mix, System S could accelerate this trend.

“There’s a new arms race, and that arms race is based on technology,” says Pleiter. “Whoever has the best technology is going to be the guy who wins.”

If the level of software intelligence that IBM is chasing seems like science fiction, remember that the many of the building blocks for these types of applications are based on well-known pattern recognition and data transformation algorithms. And with the advent of powerful, general-purpose high performance platforms like GPUs, the Cell processor and FPGAs, software is now able to process raw data streams in real time. The tough part is turning the qualitative data into useful information. By providing a higher level framework for real-time analytics, System S may be able to provide the type of environment where this possible.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pressing needs and hurdles to widespread AI adoption. The sudde Read more…

Quantinuum Reports 99.9% 2-Qubit Gate Fidelity, Caps Eventful 2 Months

April 16, 2024

March and April have been good months for Quantinuum, which today released a blog announcing the ion trap quantum computer specialist has achieved a 99.9% (three nines) two-qubit gate fidelity on its H1 system. The lates Read more…

Mystery Solved: Intel’s Former HPC Chief Now Running Software Engineering Group 

April 15, 2024

Last year, Jeff McVeigh, Intel's readily available leader of the high-performance computing group, suddenly went silent, with no interviews granted or appearances at press conferences.  It led to questions -- what's Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Institute for Human-Centered AI (HAI) put out a yearly report to t Read more…

Crossing the Quantum Threshold: The Path to 10,000 Qubits

April 15, 2024

Editor’s Note: Why do qubit count and quality matter? What’s the difference between physical qubits and logical qubits? Quantum computer vendors toss these terms and numbers around as indicators of the strengths of t Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Computational Chemistry Needs To Be Sustainable, Too

April 8, 2024

A diverse group of computational chemists is encouraging the research community to embrace a sustainable software ecosystem. That's the message behind a recent Read more…

Hyperion Research: Eleven HPC Predictions for 2024

April 4, 2024

HPCwire is happy to announce a new series with Hyperion Research  - a fact-based market research firm focusing on the HPC market. In addition to providing mark Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire