Because It’s There?

By Michael Feldman

July 20, 2007

I recently got a chance to talk with Ed Turkel, manager of HP’s Product and Technology Group for the HPC Division. We mainly discussed HP’s new multicore optimization program, but I was also interested in what he had to say about the company’s aspirations in high-end supercomputing. Although the company essentially matches IBM in HPC revenue, HP doesn’t have a Blue Gene type of solution for extreme supercomputing. In the latest Top500 list, HP actually had more entries (203) than any other vendor, but didn’t have a single system in the top 50.

That particular statistic is about to change. HP recently revealed that a 182-teraflop system has been purchased by an undisclosed Swedish government agency. The Swedish machine is a cluster comprised of 2,148 dual-processor, ProLiant C-class Xeon-based blades. Turkel says HP is hoping to get that system on the November Top500 list, where it would almost certainly break into the top 10. Another Swedish system, this one a 60-teraflop machine for the country’s National Supercomputer Centre (NSC), should also be deployed in time for the November rankings.

According to Turkel, HP is interested in the high end of the HPC market, but only where they can leverage their enterprise HPC offerings into something bigger. “We perhaps haven’t been as willing as some of our competitors to — if you will — give away systems,” explained Turkel. “But it’s not for lack of interest in the high end. Just the opposite. We’re very interested in deploying some large systems.”

He says they have no intention of developing a proprietary architecture, like Blue Gene, for a high-end offering. But when I asked him if they were going to come out with a distinct product for high-end supercomputing, he hedged a bit, leaving the door open to the possibility.

Scaling commodity clusters into the 100-teraflop-plus realm is now feasible thanks to blade technology, multicore processors and InfiniBand interrconnects. Getting to a petaflop is trickier. Sun Microsystems’ recently announced Constellation supercomputer uses a very dense blade design and a special InfiniBand switch to implement a petaflop-capable architecture. Whether commodity-based systems like this can achieve the real-world application performance of the more highly customized Cray and IBM supers remains to be seen.

But why would anyone want to chase the high end of the supercomputing market anyway? Analysts and vendors both agree that the market is small, essentially stagnant, and is dependent on the buying behavior of a limited set of customers — mostly government organizations. With the exception of Cray, companies that have focused exclusively on this market sector have either failed or were bought out. Cray itself has been swallowed and regurgitated a number of times.

Turkel said that HP’s interest in the high end of the supercomputing market is driven by the company’s strategy of using HPC as a technology incubator. The hope is that the kind of research that brought the world clusters may also come up with something else as widely applicable to the larger IT community. Potentially, that’s worth a lot.

This is the same rationale Sun used when announcing its Constellation supercomputer last month. Talking about the new offering on his blog, Sun CEO Jonathan Schwartz admitted that the high end of supercomputing is “small, esoteric, and has very small profit margins.” But, he explained, that’s not the point:

The academic supercomputing community (there’s that word again) sets the pace for enterprise computing across the world — which has grabbed on to HPC for an array of real world challenges, from virus, disease, and drug discovery, to customer purchase pattern analytics, capital markets trading, energy discovery, dynamic resource management — you name it, it’s one of the fastest growing segments in the marketplace. Proving that what starts in academia, ends up on main street.

But it works both ways. A lot of mainstream computing technology feeds back into supercomputing. And that tends to be the more typical direction of technology flow. Linux, x86 processors and Ethernet are all commodity technologies that were adopted by HPC. Even InfiniBand, which is now making its way from HPC into the enterprise, was originally developed as a general-purpose interconnect. FPGAs and GPUs may be the next examples of commodity technology that moves up the food chain.

And as for those “real world challenges” that Schwartz talks about: most of those applications run on capacity HPC clusters, not capability-class systems.

So why do these companies find the need to play at the far edge of the supercomputing market? Maybe for the same reason people climb Everest — because it’s there. Trying to explain the business case for high-end supercomputing may keep investors calm, but in truth, the motivation to feed profits doesn’t explain all vendor behavior. Sometimes all it takes is a single individual with some lofty goals and a need to succeed.

Seymor Cray wanted to build the fastest computers in the world for the joy of it. When he started Control Data Corporation in 1957, his interest was in building big scientific computers, not in making boatloads of money.

And if you’ve already made a boatload, like billionare Andy Bechtolsheim, Sun Microsystems’ chief architect, your motivations may lie somewhere beyond capitalism. Bechtolsheim is busy pushing Sun to the rarified heights of supercomputing with the aforementioned Constellation system. While that product may not make Sun rich, it makes them a player in the eyes of the supercomputing community. And if that’s enough of an incentive for the folks at HP, we may yet see another company join the petaflop club.

—–

As always, comments about HPCwire are welcomed and encouraged. Write to me, Michael Feldman, at [email protected].

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire