Intel Opens Up Multicore Development Library

By Michael Feldman

July 27, 2007

This week Intel once again proved it is serious about getting multicore tools into the hands of developers. On Tuesday, the company announced it was making its Threading Building Blocks (TBB) template library available to the open source community under the GNU General Public License. The library extends the C++ language in order to make it easier to write scalable, parallel applications for multicore processor environments. Intel will still sell the TBB product commercially, as well as bundle it with their own C++ compiler.

In a nutshell, the TBB template library provides high level C++ constructs for concurrency via a task-based model. This enables developers to avoid some of the thornier aspects of parallel programming, like low-level thread management and maintaining thread-safe data. By offering platform-independent methods to express parallel algorithms, declare concurrent containers (thread-safe data objects), and do scalar memory allocations, the programmer is freed from dealing with OS-level threads, locks, and mutexs. For those who need more low-level control, TBB also offers access to atomic operations and the task scheduler. Encapsulated in the implementation is the flexibility to transparently scale the level of parallelization as applications are moved to processors with more (or fewer) cores.

While early adopters of the product were impressed by its capabilities, they also had some reservations. According to James Reinders, Intel’s director of software development products, the decision to take the year-old product to the open source community was driven by customer concerns about investing in a proprietary programming model and their desire to see the software supported on a wider range of OS/hardware platforms. Although Intel has contributed to open source projects in the past and continues to do so, this represents the first time the company has moved a commercial product into the open source realm.

The fact that Intel is willing to let its software be used on non-Intel processors is an indication of the company’s interest in the multicore ecosystem. In truth, even before it went open source, TBB could run on AMD’s x86 chips as easily as Intel’s. So taking TBB to the open source community isn’t going to give its arch-rival an additional edge. For Intel, the chipmaker with the largest share of the general-purpose processor market, the calculation is that it has the most to gain from more widespread parallel software tools. When a rising tide lifts all boats, the Queen Mary benefits the most.

Generally speaking, open source has proven to be the most effective way to spread software across hardware platforms. Currently supported on x86 (32 and 64 bits) on Linux, Windows and Mac OS, TBB will soon have source builds for G5/Mac OS as well as x86/Solaris and Sparc/Solaris 10. FreeBSD source builds are also in the works. To help kickstart the TBB open source project, Reinders says that Intel will be adding engineers to the effort.

A website for the open source project has been set up at www.threadingbuildingblocks.org. And for those who want to delve even deeper, you can now buy Reinders own TBB book — Intel Threading Building Blocks, Outfitting C++ for Multi-core Processor Parallelism. This O’Reilly Nutshell Handbook is geared for the programmer who may not be conversant in concurrent programming.

However, TBB is not an all-inclusive parallel programming model. It’s specifically designed to take advantage of a multicore-based, shared memory environments, as opposed to a distributed memory model found in cluster architectures. Intel reports early success with application segments like digital content creation, animation, financial services, electronic design and automation and design simulation. At this point, the TBB implementation can scale up to 32 cores or so, giving it at least a few years of breathing room as processors catch up. There has been some interest in applying TBB to high performance accelerators like the Cell processor, GPUs or even FPGAs. However, these DMA-based architectures, with lots of parallel units for static data parallelism, are not a great fit for TBB.

Although not suitable for MPI-based applications, if users are interested in using a hybrid approach combining MPI with node-based multicore parallelism, Reinders thinks TBB might worth considering. But even he admits that the hybrid programming model on clusters, hasn’t taken off yet due to the extra programming burden. At this point, most users are content to rely on MPI implementations that make use of node locality to optimize thread management and communication.

Looking forward to manycore processors, TBB will need to address architectural changes that will arrive when core counts start getting into the triple digits. Intel’s own Terascale program is developing processors at this scale. As the core count begins to ratchet up, designers will likely be forced to utilize non-uniform memory architectures (NUMA) to support reasonable memory access times. In order to keep the level of abstraction consistent, TBB will have to pay attention to memory locality and find a way to automate data layout for the user. Manycore architectures will also attract a more varied range of software as they become hosts for workloads that would have required an entire mainframe or cluster in the past.

“TBB is good at programs which are computationally intensive, but when you get into event-driven applications or programs with a lot of I/O, TBB is not ready for that yet, explained Reinders.” And that’s an area of interest for us, because as we get to manycore, programs will be doing more diverse things; we need to be willing to let a processor stall on I/O occasionally. We’d like to expand the programming model to support that.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire