The End Game

By Michael Feldman

July 27, 2007

In this week’s issue, PGI’s Michael Wolfe writes a thoughtful piece about our changing attitudes towards high-end computing productivity and how it relates to compilers and software in general. Wolfe highlights some of the difficulties of defining productivity and the limitations of those attempts. Reading the article got me to thinking about a topic that is often missing from the discussion: how computing productivity fits into our overall goals of increasing value. The assumption is that increased productivity will automatically give us better computing systems via some trickle-down effect. But we may be disappointed.

Wolfe himself alludes to this when he questions the utility of increasing productivity at the expense of performance. “We may measure productivity as performance/cost, but we don’t get true high productivity by simply reducing the denominator faster than we reduce the numerator,” he says. In essence he’s implying that productivity, at least in the narrow definition of the term, is not the end game.

Let’s say we find a great new programming language that makes it easy to churn out a low-performing atmospheric modeling application. What’s the point? The cost saved in producing the software will be lost if slower execution prevents it from predicting weather events in a timely manner. In addition, the new language may not have the tool support or portability of a less productive language, which threatens the longevity of applications developed with it. It seems fairly obvious that increasing productivity for its own sake won’t necessarily lead to practical outcomes. (The same sort of disconnect occurs when economists talk about maximizing the efficiencies of the market, ignoring the fact that the point of economies is to maximize the financial well-being of actual people.)

So what is the end game for high-end computing, or any computing, for that matter? Let’s simply call it “usefulness” — the attribute of how much value can be derived from a computing system over its lifetime. Now I suppose we could try to merge usefulness into the definition of productivity, but that seems like a bit of a semantic stretch. Usefulness has to do with how practical something is, not just how efficiently it operates. In business-speak they talk about return on investment (ROI), which is the ratio of money lost or gained in relation the the money invested. This might be a decent starting point for measuring usefulness. But I suspect a larger perspective is required.

On its best days, the government actively looks for ways to seek out useful solutions for the people it represents. That’s why the feds are funding DARPA’s High Productivity Computing Systems (HPCS) program. The goal of this effort is to produce a new generation of economically viable HPC systems for government and industry by 2010. Even though productivity is HPCS’s middle name (literally), I’m hoping that the people involved in the program will not lose sight of the goal of creating practical systems.

While commercial organizations tend to act in their own self interest, they usually have a bigger role to play than the government in producing useful computing systems. Since customers generally demand practical solutions, vendors are focused on accommodating them. In today’s environment, users require that computing systems be more than just technically sound and inexpensive. They want to be assured that what they buy is well-supported, and if possible, not dependent upon the control of a single vendor. This encourages companies to form consortiums, establish standards, and contribute intellectual property to the community.

A recent example of the latter is Intel’s release of their Threading Building Blocks (TBB) library into the open source community, which I write about in this week’s issue. The TBB library can be used to develop C++ applications for multicore environments using high-level task parallelism. By avoiding having to program and debug low-level thread and lock management, developers should realize increased productivity. And according to Intel, the performance of TBB is as good or better than most hand-coded versions of parallel programming.

But even though the TBB software offered both performance and productivity, users wanted more. They told Intel they would like the software to run everywhere, not just on x86 processors, and not necessarily just on Linux, Windows and Mac OS. Users expressed that they would also rather not be dependent upon Intel to maintain this library over the lifetime of their applications. They weren’t worried that Intel would disappear, just that the company might decide to pull the plug on the software at an inopportune time. From a business standpoint, Intel is very interested in getting the TBB software into the multicore ecosystem, but would rather not be bothered with implementing each OS and processor port.

Open source was the logical answer to make this software truly useful. Although TBB is currently only suited for low-end HPC today (it scales up to a few dozen cores), now that the software is available to the open source community, it is more likely to attract the attention of developers with bigger things in mind.

I suppose it seems a little premature to be talking about high usefulness computing as a successor to high productivity computing. We don’t yet have a good grasp on how to measure and improve productivity. I’m certainly not advocating we stop looking at how to make our software processes and hardware systems more efficient. And I’m not changing the publication to HUCwire anytime soon. But I think it is worthwhile to keep in mind that increasing productivity is just a means to an end, not an end unto itself.

—–

As always, comments about HPCwire are welcomed and encouraged. Write to me, Michael Feldman, at [email protected].

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

Nvidia Appoints Andy Grant as EMEA Director of Supercomputing, Higher Education, and AI

March 22, 2024

Nvidia recently appointed Andy Grant as Director, Supercomputing, Higher Education, and AI for Europe, the Middle East, and Africa (EMEA). With over 25 years of high-performance computing (HPC) experience, Grant brings a Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Houston We Have a Solution: Addressing the HPC and Tech Talent Gap

March 15, 2024

Generations of Houstonian teachers, counselors, and parents have either worked in the aerospace industry or know people who do - the prospect of entering the fi Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire