Heterogeneous Processing In The Age Of Nanocore (Part I)

By the High-End Crusader

August 24, 2007

In a series of three articles, the High-End Crusader ponders the future impact of industry’s ever-evolving many-core technology on both parallel computing and heterogeneous processing. In the first article, he explains the meltdown of monolithic, monothreaded, out-of-order scalar processors as vehicles for delivering steadily increasing performance.

The high-end computing community needs to reconceptualize both parallel computing and heterogeneous processing in tandem with industry’s unsteady progression from multicore infancy to many-core adolescence to the full maturity of nanocore.

Nanocore is a notional scaling range for the number of cores in a chip multiprocessor. The low end of the range is the inflection point, sometime after 64 cores, when wholly innovative microarchitectural strategies are required to scale further. The high end of the range is the time, perhaps in 2014, when we can integrate 1,024 cores on a single processor die.

The conventional justification of heterogeneous processing, which has much to recommend it, is that distinct processor types, with distinct core execution models, can produce higher execution efficiencies on modern applications comprised of disparate subcomputations with disparate algorithmic characteristics and thus disparate architectural needs. Standard metrics of execution efficiency include operations per second per dollar and operations per second per watt. A slogan that nicely captures this line of thinking is, make the common parallelism case fast and low power, tightly integrate all parallelism cases so that there is minimum overhead in “switching” among them, and scale to the heavens, which goes nicely with execution efficiency.

Note that “tight integration” is first and foremost tight integration among the disparate cores on a heterogeneous processor die.

On occasion, provision is made for locality. For example, there is an admirable special-purpose machine in development that optimizes short-range communication at the expense of long-range communication, targeting strongly localizable applications. In contrast, a general-purpose heterogeneous-processing system achieves high execution efficiencies on a broad range of applications, no matter what their parallelism or locality characteristics.

Another observation is that the vast cloud of systems collectively known as “high-performance computers” has bifurcated into two effectively disjoint sets, depending on whether government funding is driving performance regimes well above any level the private sector would consider a market sweet spot.

This sweet spot is constantly evolving; it might be anywhere from a few tens to a few hundreds of sustained TFs/s in 2011. Pseudo-commercial super clusters are red herrings that obscure this clear picture.

Be this as it may, only a handful of systems are scaling ambitiously. The reference machine is, of course, Japan’s Keisoku Keisanki, which is running in the Riken lab today at 2 PFs/s. This is a machine whose heroic _useful_ scalability is due to brilliantly engineered integration of heterogeneous processors. Here is the break down of its 10 PFs/s. First, 1.5 PFs/s comes from (presumably out-of-order) scalar processors. Then, there is another 0.5 PFs/s coming from vector processors. Finally, the heavy lifting is done by “Grape-7”, which is an array of identical special-purpose devices (SPD) specially optimized for finite-element analysis. This SPD array makes up the remaining
8 PFs/s.

Sustained performance will be remarkably high on each of 21 preselected applications.

The hardware genius of the Japanese machine is the tight integration of these widely disparate processor types. The jury is still out on the valiant Japanese effort to supply adequate system software, which may or may not succeed. All told, the Japanese are investing $1 billion to stand up this machine. In high-end computing, the Japanese government is not a pussy.

In the United States, there are: 1) several ambitious efforts at the national labs, 2) the irreplaceable HPCS program — whose two components are Cray’s heterogeneous distributed-shared-memory Cascade machine and IBM’s homogeneous distributed-cluster PERCS machine, and 3) the ubiquitous IBM Blue Gene/ machine, about whose usefulness opinions differ, and the newer IBM Cyclops machine, which, in your correspondent’s opinion, is less hype and more machine. These machines will go toe to toe with the Keisoku Keisanki, which will prospectively deliver a usable 10 PFs/s in the same time frame.

In a word, the fat of the market for the private sector is mid-range rather than high-end HPC. The only machines that are pushing the envelope are machines “on the government curve” — in Japan, in the U.S., in the EU, and even in China.

This is the strategic backdrop for this series of articles.

Technology Happens

In 1998, say, vendors were quite happy to enforce two of Moore’s processor laws. For reference, the computing power of a monolithic, monothreaded, out-of-order scalar processor, measured as logic-transistor-Hz per square centimeter, increases by a factor of 2.4 every 3 years. And, the computing power of a monolithic, monothreaded, out-of-order scalar processor, measured as logic-transistor-Hz per dollar, increases by a factor of 2.8 every 3 years.

Starting, say, in 2002, vendors were increasingly stymied by a few unintended consequences of enforcing the law, especially in its product form at full-chip scale. There were two problems. First, high clock frequency and high voltage turn chips into toasters. Second, increasing clock frequency makes things seem farther away (you can’t get very far in a single clock cycle).

There is a simple solution: Throw sequential computing off the raft!

We appear to have reached a new consensus: monolithic, monothreaded, out-of-order scalar processor are obsolete and should be replaced. The reasons are given below.

Instruction-level parallelism, i.e., all the expensive out-of-order machinery for extracting parallelism from single threads, has been exhausted (the ILP Wall). Even if transistors are free, power is expensive (the Power Wall). Salvation by cache, i.e., exploiting data reuse, only works for strongly localizable algorithms (the Memory Wall).

But transistors _are_ free (and fast), by Moore’s law!

So, mix a few larger, more complex, hotter cores and many smaller, simpler, cooler cores on a single die. This raises a few questions.

What is the correct microarchitecture, including the cache architecture, for a nanocore die? What is the correct on-chip interconnection network? What are the correct nanoarchitectures for the nanocores? How should the operating system allocate and control critical resources, e.g., cache bandwidth, that are shared among cores? How should we program these systems?

What is abundantly clear is that nanocore implies a wholesale move to parallel computing. With a thousand cores on a die and a hundred threads per in-order multithreaded core, someone or something had better master thread-level parallelism (TLP).

Yet, in spite of the divergence between the government and market curves, the fates of elite and mainstream parallel computing are tightly coupled; both communities must participate in the necessary reinvention of parallel computing. Indeed, success is a package deal. Consider that responsibility for optimizing parallel computations is shared in a subtle way among the architecture, the language, the programming environment, the compiler, the runtime, and the programmer/algorithm designer — all of whom are parallel.

Fortunately, we already know something about parallel computing.

Walls That Imprison Killer Micros

First, the ILP Wall. Scalar (monothreaded) ILP is out-of-order execution, register renaming, branch prediction, (wasted) speculation, etc. At best, this is an expensive solution to high single-thread performance — assuming that such a thing matters to you. Vector (monothreaded) ILP is still a contender whenever the application is vectorizable. Note that both forms of (monothreaded) ILP have the amount of parallelism they generate sharply curtailed by high intensity of either control-dependent computation or data-dependent memory addressing.

TLP, i.e., multithreading, is a more robust form of parallelism. Indeed, since multithreading escapes the curtailment just alluded to, this could help define an unexplored applications space, whose data structures are sometimes sparse, irregular graphs, and whose application domains include such areas as biological, financial, and national-security computing. This space might perhaps best be characterized as lying in the intersection of data-centric computing and adaptive on-line task control.

What is multithreading’s execution efficiency? Is there a sufficiently fine granularity of thread-level parallelism and synchronization at which in-order multithreading matches the control and datapath execution efficiencies of vector processors on vectorizable applications? In other words, would ultra fine-grained memory-based synchronization of threads — both blocking and nonblocking — allow in-order multithreading to _subsume_ vector pipelining? Of course, this presumes consistently low thread state and thus perhaps no persistent temporal locality.

Finally, does it make sense to mix and match these things, which is one form of heterogeneity?

Second, the Power Wall. The processor power wall is only part of the general power wall, but it merits discussion. Analysis of the static and dynamic power equations shows us that parallelism is _the_ energy-efficient way to achieve performance. We can scale down the frequency and voltage of each core and increase the number of cores. Throwing the ILP machinery off the raft is another big win.

Smaller cores improve spatial efficiency on parallel codes. This gives us more ops per second per dollar. Smaller cores provide finer-grained ability to perform dynamic voltage scaling and power down. This gives us more ops per second per watt. Smaller cores also impact resilience favorably.

Still, in high-bandwidth systems, the global system interconnect is the principal consumer of power. Memory also uses considerable power. Even the on-chip network uses power. For power management, we must consider the relative power consumption of each component.

Third, the Memory Wall. Unrealistic expectations of achieving salvation via large caches have allowed the industry to live in total denial of the memory-latency wall. Let’s walk through this.

Suppose you want to double the performance of an application without increasing the actual aggregate DRAM bandwidth. Can you do this by increasing the size of the cache? As the problem size increases, what is the asymptotic growth of arithmetic intensity, i.e., the number of operations performed per operand received?

For dense matrix-matrix multiply or dense LU, you must make the cache 4x bigger. For sorting or FFTs, you must square the size of the cache. For sparse or dense matrix-vector multiply, it is impossible. And don’t even think about parallel graph algorithms with pointer chasing.

Fast clocks and deep interconnects make major latency inevitable. Algorithms differ enormously in their localizability. While latency avoidance is no substitute for latency tolerance, it can be a marvelous complement.

The memory-bandwidth wall is a potential showstopper in achieving nanocore. At first glance, it appears that off-chip bandwidth requirements grow linearly with the number of cores. If we don’t solve “chip I/O”, then nanocore simply won’t happen. We need all of the following even for _desktop_ nanocore: 1) high chip I/O, i.e., pin bandwidth, 2) high local off-chip interconnect bandwidth, and 3) high local aggregate DRAM bandwidth.

Hardware bandwidth is sine qua non, but latency and actual bandwidth, i.e., the bandwidth generated by parallelism, are related by Little’s law, as we shall soon see.

At large scale, processor parallelism and global system bandwidth are the foundations of tolerating long-range network/memory latency. Historically, the more long range the latency, the more challenging it has been to tolerate it.

Latency Tolerance 101

Consider a processor connected to a memory via a pipe. Assume there are no hardware-bandwidth limitations. Words are requested from memory and arrive.

To sustain an actual bandwidth of b words per cycle, we must sustain concurrency c, i.e., the number of memory references outstanding in each cycle, equal to b times the total word-access latency t in cycles. This is Little’s law.

In a multiprocessor, this picture is simply replicated in space. This form of tolerating latency is just memory pipelining. Processors supply the parallelism that is the source of this concurrency. Note that latency comes in many forms. For example, there is: 1) memory latency, 2) synchronization latency, and 3) branch latency.

Computing Past Memory Walls

Latency tolerance handles memory-latency walls, but memory-bandwidth walls are a genuine problem.

For a nanocore-die’s memory-bandwidth walls, we need engineering solutions to increase all of the following: 1) the nanocore-die pin bandwidth, 2) the local
(memory) and global (network) interconnect bandwidths, and 3) the aggregate hardware DRAM bandwidth per gigabyte. For a nanocore’s memory-bandwidth walls, we need to increase the hierarchical on-chip-network bandwidths.

We know today how to deal with memory-latency walls. We simply use in-order multithreaded cores to tolerate latency at multiple space scales — there are various hierarchical on-chip and off-chip latencies. As the latency increases, we simply increase the degree of multithreading. Since threads are fully virtualized, this doesn’t affect the programming model at any scale.

None of this will work without sensible hierarchical caches. Such caches: 1) reduce bandwidth requirements, 2) do not themselves waste bandwidth, e.g., by generating coherence traffic, and 3) enable exploitation of on-chip “spatial” dependence locality.

Think about hierarchy. A “processor” can be: 1) a single core, 2) a physically compact group of cores, or 3) the entire processor die. Any “processor” has a boundary between it and its environment, and local store (or “cache”) within that boundary.

A sensible cache reduces bandwidth requirements, and does not create unnecessary traffic across its boundary. Temporal locality with respect to a given processor boundary may be implemented by “spatial” locality between two enclosed processor boundaries.

Conclusion Of Part I

Even though heterogeneous processing maintains execution efficiencies in the face of heterogeneity within individual applications, that doesn’t mean that the world only needs one heterogeneous-processing architecture. Still, here is one possibility.

A nanocore logic die is a reasonable implementation of a heterogeneous hierarchical-shared-cache multiprocessor. System memory, both UMA local DRAM memory per die and NUMA global DRAM memory, is separate. A multidie nanocore system is a shared-memory multiprocessor of shared-cache multiprocessors — of in-order multithreaded processors!

Sophisticated, multilevel system software provides scheduling strategies and other system functions that maximize — at each multiprocessor level — the performance extracted from scarce system resources, often the system bandwidth at various space scales.

Ultra fine-grained thread-level parallelism — billion-way parallelism — and ultra fine-grained synchronization enables efficient implementation of an expressive high-level parallel language.

Modulo memory uniformity, which changes the performance model, a single execution model bridges single-die workstations and massively multidie supercomputers.

Here is your correspondent’s personal wish-list for parallel computing. In his opinion, we need: 1) an expressive parallel language with high-level programming abstractions that blends deterministic functional programming and nondeterministic transactional state updating, 2) heterogeneous-processing systems that execute programs in something reasonably close to dependence order, 3) compilation techniques for parallel programs that use programmer assertions to aid in discovering hierarchical dependence graphs, 4) a synergy between die microarchitectures and system architectures that enables efficient execution of partially ordered programs, and finally 5) a hierarchy of alternating latency-tolerance and latency-avoidance techniques, e.g., layering global task-reference concurrency on top of global memory-reference concurrency, that scales to full-system, long-range latency management even in ambitious multi-petaflops (or multi-petaops) “government-curve” systems.

We need to reinvent parallel computing because, as many-core intensifies, it will become our common fate, and we never got it right in the first place.
We need to reinvent heterogeneous processing because, quite apart from useful-scalability imperatives, there are many distinct types of heterogeneity, even many distinct types of processor heterogeneity, and we will need to make intelligent choices about the type (or types) of heterogeneity our applications need.

Next part: open problems and types of heterogeneity.

—–

The High-End Crusader, a noted expert in high-performance computing and communications, shall remain anonymous. He alone bears responsibility for these commentaries. Replies are welcome and may be sent to HPCwire editor Michael Feldman at [email protected].

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

Nvidia Appoints Andy Grant as EMEA Director of Supercomputing, Higher Education, and AI

March 22, 2024

Nvidia recently appointed Andy Grant as Director, Supercomputing, Higher Education, and AI for Europe, the Middle East, and Africa (EMEA). With over 25 years of high-performance computing (HPC) experience, Grant brings a Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Houston We Have a Solution: Addressing the HPC and Tech Talent Gap

March 15, 2024

Generations of Houstonian teachers, counselors, and parents have either worked in the aerospace industry or know people who do - the prospect of entering the fi Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire