Are We Green Yet?

By Michael Feldman

October 19, 2007

With crude oil prices hitting a record $87 a barrel this week, IT users are being reminded once again that datacenter energy consumption and computing demand are on a collision course. Earlier this month, the IT analyst firm Gartner reported that “by 2011, more than 70 percent of U.S. enterprise datacenters will face tangible disruptions related to energy consumption, floor space, and/or costs. In fact, during the next five years, most U.S. enterprise datacenters will spend as much on energy (power and cooling) as they will on hardware infrastructure.”

The problem is even more acute in the high performance computing realm, where increasingly more powerful systems are being built to work on increasingly bigger problems, like for example, (ironically) global warming. While overall performance-per-watt is certainly improving, those gains are being outstripped by the demand for even greater amounts of compute power. And even though the energy issue has been with us for awhile, it’s reaching a new urgency as energy consumption is starting to limit system size.

The 500 teraflop “Ranger” supercomputing cluster being built at the Texas Advanced Computing Center (TACC) is a good example. That machine is expected to draw 2.4 megawatts and require an additional megawatt just to keep it cool. Since Ranger is based on the latest quad-core Opteron technology, it pretty much represents the current level of performance-per-watt you can get from commercial x86 cluster technology.

The IBM Blue Gene is better in this respect. The German publication heise online is reporting the 220 teraflop Blue Gene/P system that was installed this week at the Jülich Supercomputing Centre uses just 500 kilowatts. That’s more than twice the energy efficiency of the TACC system. Along the same lines, the new SiCortex system just installed at Argonne National Laboratory on Monday (which I write about in this issue) uses just 18 kilowatts to achieve 5.8 teraflops. Like the PowerPC-based Blue Gene, the SiCortex machine leverages low-power RISC engines, in this case 500 MHz MIP64 processors, to achieve energy savings. By using a larger number of slower CPUs to achieve the same raw performance as a smaller number of faster x86 CPUs, overall energy use is reduced. It’s analogous to the multicore strategy of delivering a larger number of slower cores versus a single fast core.

The heise online article also points to a recent presentation by Alan Gara, chief architect for Blue Gene, where he talks about the looming energy problem of many-petaflop systems:

Mr. Gara is convinced that it will be possible at some time between 2015 and 2020 to achieve peak performances of 200 petaflops per second, but that the machines capable of such feats will require 25 to 50 megawatts of energy. And this assessment already takes a 20-fold improvement in energy efficiency for granted. According to Mr. Gara, for such a supercomputer acquisition costs and running costs would be on par.

Setting aside the feasibility of a 50 megawatt datacenter, Gara’s assessment essentially corroborates Gartner’s prediction that energy and hardware costs are equalizing throughout the industry. That should cause users to rethink their buying strategy for future systems. And since HPC systems have such high power rates and such high rates of technology obsolescence, one might assume this community would be leading the way to energy efficient systems.

With the exception of some in the HPC research community, this is not the case. While green IT organizations, consortiums and initiatives have become a growth industry, green HPC has not. Why? Lots of reasons:

  1. Lack of HPC Virtualization. The industry trend to reduce energy consumption by consolidating compute infrastructure with traditional server virtualization is a bad fit for HPC. In general, high performance computing has the opposite problem of an over built datacenter. HPC users want to distribute workloads over as much hardware as possible to speed execution, not crowd a lot of performance-hungry apps into a single box.
  2. Technology Momentum. Even in the cutting-edge realm of high performance computing, users have made long-term investments in software, hardware infrastructure, and human expertise that are tied to established technologies. If this weren’t the case, SiCortex and ClearSpeed would be filing for IPOs and there would be Blue Genes in every HPC facility. Application retargeting costs, additional infrastructure support and cultural bias all slow adoption of new technologies.
  3. New Problem. The urgency of the energy problem has escalated faster than people can understand it. Marketing departments have been quick to capitalize on this, since green computing is perceived as a “Mom and Apple Pie” issue by vendors. But the multitude of solutions and marketing claims is causing confusion. Every piece of silicon out there seems to be branded with the green label nowadays.
  4. Acquisition Costs. Initial acquisition costs still carry a lot of weight in decision-making. Part of the problem is that people who buy the hardware are often not the same ones paying the electric bill. In his Real World IT blog, George Ou argues that until the people who procure the hardware are the ones who get billed for the electricity that the hardware uses, the incentive to purchase energy efficient systems won’t exist. This is an industry-wide problem.
  5. Refresh Cycle. Related to acquisition costs is the hardware upgrade strategy. Most enterprises, HPC or not, refresh their hardware every three to five years. For high-end supercomputing, this cycle can be even longer because of the initial high acquisition costs. (No one’s going to decommission a multi-million dollar Blue Gene/L just because it uses more energy than the newer Blue Gene/P.)

Keep in mind that system acquisition and upgrade costs also reflect energy consumption — the energy used to develop, build and ship the hardware (and software!). So presumably this should be factored into the lifetime energy consumption of the machine. I don’t know if anyone has ever determined the energy required to construct a supercomputer, but I assume it’s significant.

I’ll finish with a sobering thought about the performance-per-watt metric that most of us throw around. It’s not that useful. In fact it’s no more useful than the peak performance metric that it’s derived from. Sustained application performance-per-watt is a more realistic way to measure the energy efficiency of a system. Better yet would be to measure the amount of energy required to solve a problem — “watt-hours to solution.”

Thinking about it like that might also help us to realize that software can play a huge role in energy conservation, even beyond virtualization technology. So no, we’re not green yet. We’re barely chartreuse.

—–

As always, comments about HPCwire are welcomed and encouraged. Write to me, Michael Feldman, at [email protected].

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, and this day of contemplation is meant to provide all of us Read more…

Intel Announces Hala Point – World’s Largest Neuromorphic System for Sustainable AI

April 22, 2024

As we find ourselves on the brink of a technological revolution, the need for efficient and sustainable computing solutions has never been more critical.  A computer system that can mimic the way humans process and s Read more…

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire