NEC Does Some Vector Addition

By Michael Feldman

November 2, 2007

Last Thursday, NEC announced its sixth generation vector supercomputer, the SX-9, which the company is touting as the “worlds fastest vector supercomputer.” The company says the new machine will be twice as energy-efficient as the SX-8R generation. The SX-9 is based on a new 100 gigaflop vector processor, sixteen of which are placed in a node. In addition to the new vector processor, the SX-9 supports up to one terabyte of shared memory per node and an internode interconnect of up to 128 GB/second. At its maximum configuration of 512 nodes, the SX-9 would deliver a peak vector performance of 839 teraflops.

Before I go any further, I should point out that to the best of my knowledge, no such machine is being built — or ever will be. According to Thomas Schoenemeyer, HPC Presales Manager, NEC GmbH, nothing near the size of an 839 teraflop system is in the pipeline. NEC has orders for two systems in Europe. One is headed to the German Weather Service (DWD); the other to Meteo France. The German system, which will deliver 39 teraflops, and, coincidentally, costs 39 million euros (72 million dollars), is scheduled to be fully operational in 2010. The Meteo France system is also expected to be a sub-100 teraflop machine. This week, the company also announced an order from Japan’s Tohoku University for a 26 teraflop system. NEC plans to ship bigger SX-9 systems down the road, but they don’t expect to be challenging petaflop supercomputers in the foreseeable future.

“We are not going to be on the top of the TOP500 list with this system,” admits Schoenemeyer. “Our focus is the productivity of the customer.”

An 839 teraflop SX-9 would probably cost in the neighborhood of a billion dollars. So despite what you might have read elsewhere, the top systems from Cray and IBM are unlikely to be challenged by a maxed out SX-9 machine anytime soon. The last NEC machine to achieve TOP500 notoriety was the 36 teraflop Earth Simulator, a SX-6 generation system that was ranked the most powerful machine in the world from 2002 to 2004, before IBM Blue Gene/L overtook it.

Like its forebearers, the SX-9 is targeted to weather forecasting service facilities, climate research centers, and other government science centers. NEC has sold over 1000 SX systems over the past two decades — the vast majority in Japan and Europe, although there are some outliers in Australia, South Africa, and Brazil. There are virtually none in North America.

The way NEC is happily churning out vector supercomputers, one might get the impression that weather and climate modeling is a growth industry. While global warming is certainly a big topic these days, such research is unlikely to propel SX-9 production into the double-digit growth rates enjoyed by the overall HPC market.

But unlike in North America, Japan and Europe have a decent-sized installed base of vector machines and the vast majority of them are NEC supers. Although most of the 1000-plus NEC vector machines sold over the last two decades have been retired, a lot of Japanese and European Earth science centers still run on SX systems. NEC is hoping many of these organizations will upgrade to the SX-9 at some point and keep the legacy going.

SX-8 applications are upwardly compatible with SX-9 (binary compatible), so the software upgrade path should be painless. NEC maintains its own compiler for the vector processors, as well as a Super-UX Unix OS to enable applications to fully utilize the large flat memory architecture and powerful processors. Both OpenMP and MPI  parallelism are supported. It’s this kind of end-to-end support that has allowed NEC to maintain, and even grow, its customer base for more than two decades.

In the recent past, Cray has had some success with its X1 and X1E vector machines (Warsaw University, Spain’s National Institute of Meteorology, Korea Meteorological Administration). But today the company is penetrating the European market with its Opteron-based XT4 systems. Cray’s future strategy for its vector computing offerings will become more apparent next week.

Dedicated vector machines used to be all the rage in supercomputing, starting with the first commercial system in 1974, the CDC STAR-100. Cray soon followed with the Cray-1 in 1976. Later, NEC, Fujitsu and Hitachi each developed their own architectures. But vector supercomputing is a tough sell these days. The market share of these types of machines has been declining for some time, replaced by more general-purpose systems — both tightly coupled supercomputers and computer clusters — based on superscalar CPUs.

While HPC applications that make heavy use of a lot of matrix arithmetic, like computational fluid dynamic (CFD) codes, are well-suited to vector processors, in practice, multicore superscalar chips have proved to be a better overall technology. This is mainly because as HPC applications evolve, they become more complex, employing a greater variety of algorithms to get their job done. This complexity manifests itself in diverse computing requirements; some parts of the code require high levels of single-threaded performance, other parts require a lot of threads, and still others benefit from lots of data parallelism. Systems based on scalar processors tend to be very good at the first two, and pretty good at the third one. Vector-based machines are really only good at data parallelism (and actually only a subset of that). Even weather modeling applications, the vector machine’s raison d’etre, require scalar processing for optimal performance.

More commodity-based vector processing solutions already exist and more are on the way. Short-vector SIMD on CPUs, like PowerPC AltiVec and x86 SSE, is a step in the direction of integrated vector capabilities. Mixing vector and scalar engines on the same dies, as has been done with the Cell BE processor, is another approach to making vector processing more mainstream. And as I wrote last week, coprocessor accelerators, like GPUs, FPGAs, and SIMD ASICs (ClearSpeed), are providing similar capabilities at a much more attractive price.

In the end, economics will choose how vector computing gets done. But the purveyors of proprietary solutions are on the wrong side of history. General-purpose commodity computing is not just here to stay, it’s here to dominate.

—–

As always, comments about HPCwire are welcomed and encouraged. Write to me, Michael Feldman, at [email protected].

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pressing needs and hurdles to widespread AI adoption. The sudde Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire