Cray Announces Next Generation XT5 Supercomputers

By Michael Feldman

November 9, 2007

On Tuesday, Cray announced their new XT5 product family, the next generation in their flagship XT line of supercomputers, the company’s massively parallel processor (MPP) architecture based on AMD Opteron processors. The new family encompasses two machines the XT5 and the XT5h. The XT5 proper is the follow-on to the XT4, while the XT5h represents their hybrid variant. According to Cray, the new machines are capable of scaling to sustained — not peak — petaflop performance.

Like the Sun Microsystems Constellation and IBM Blue Gene/P supercomputers, the XT5 is using quad-core technology as the lever to achieve petaflop-level performance. This follows on the heels of the dramatic increase in processing power provided by dual-core processors, when they became mainstays of supercomputers in 2005. With quad-core technology now hitting its stride, the realization of sustained petaflop machines is within reach.

“We absolutely believe that this trend is going to continue, and within the next five years you’ll see million processor systems that will be equivalent to the entire TOP500 list as it exists today,” says Jan Silverman, Cray’s senior VP of Corporate Strategy and Business Development.

The trick is how to build systems so that applications can take advantage of this level of parallelism. This is Cray’s value proposition. The company’s approach is to use a mix of standard technologies, like Opteron processors and Linux, and proprietary technologies, like their SeaStar interconnect and their home-brewed vectors processors to build elite systems. In the XT5 family, they continue this tradition.

The company first introduced its Opteron-based XT line with the launch of the XT3 in 2005. The XT4 followed in 2006. Both systems were built for longevity. Anybody with an XT3 can upgrade their hardware with XT4 and XT5 parts. According to Cray, 75 percent of the deployed XT systems have already been upgraded.

Unlike the previous XTs, the XT5 runs completely under a standard Linux environment. This opens up the architecture to off-the-shelf Linux-based ISV applications — something not possible until now. On the previous XT machines, Linux ran only on the I/O nodes. The compute nodes ran Catamount, a non-standard microkernel-based OS. The default OS that runs on the XT5 compute nodes is actually an ultra-lightweight version of SUSE Linux that doesn’t contain the I/O kernel and other system services. The idea is to unburden the OS from a lot of interrupt handling in order to achieve maximum computational performance. As it turns out though, many ISV codes assume a full Linux implementation. If the user needs to run those applications, Linux functionality is added back in, but at some cost in performance.

Silverman says customers who want to run ISV applications will be willing to take the performance hit of a fatter OS for the convenience of using off-the-shelf software. Applications that don’t need all the Linux goodies can run on nodes with the stripped down version. This is a different model than is used by traditional clusters, where a fully configured Linux runs on each node.

An XT5 cabinet contains 768 Opteron cores and delivers about 7 peak teraflops, while consuming something in the neighborhood of 42 KW. A 43 teraflop system could fit into just six cabinets. To achieve this same level of performance, an XT3 system takes 120 cabinets. But it’s not just about peak teraflops. The system is designed for scalability so that you don’t get diminishing returns as you add more compute muscle.

Maybe the architecture’s most important technology for enabling scalability is its 6-port SeaStar router, the basis of Cray’s 3D Torus high performance interconnect. The version in XT5 is SeaStar2+, which the company says has 30 percent greater performance than the SeaStar2 router on the XT4 blade. But since the SeaStar2+ connects to two Opteron chips, versus one for the SeaStar2, the XT4 blade actually offers a better communication/compute ratio than the newer XT5.

Fortunately, XT4 blades can be installed in XT5 cabinets in any combination with XT5 blades. In a lot of cases, the XT4 blades still make sense, since the one-to-one SeaStar-Opteron connection is better for applications where communication bandwidth is paramount. The XT5 blade would be the better choice for CPU-intensive workloads or where the applications can benefit from the additional memory within the node (32 GB for the XT5, versus 8 KB for the XT4).

Since the new machine runs Linux, Cray is planning to attract commercial users that want to run ISV applications at a scale beyond what a typical cluster solution could provide. Automobile crash-test simulations that model the complex interaction between cars and humans is one such example. This represents part of Cray’s strategy to move beyond the research centers and government labs. With the high reliability they believe they’ve achieved in the second and third generation XT4 and XT5, Cray is now positioning these machines for operational work. One example is the 5 teraflop XT4 system used by MeteoSwiss for its around-the-clock weather forecasting.

The other half of the XT5 family, the XT5h, is the architecture that includes vector processor blades and FPGA blades. The XT5h replaces Cray’s FPGA-equipped XD1 product and X1E vector machines. The new machine offers the ability to utilize multiple compute architectures, as well as support global memory programming. It represents a significant step toward Cray’s goal of offering adaptive computing systems. Adaptive computing is a model intended to optimize both programmer productivity and computing resources by enabling software components to run on the most suitable hardware available in the system. This XT5h platform represents Cray’s first integrated hybrid computing architecture for heterogeneous computing.

The FPGA blade, called XR1, is made up of two pairs of Opteron processors hooked up, via HyperTransport, to two DRC-supplied Reconfigurable Processor Units (RPU). According to Cray, this tight processor coupling ensures low latency and high-bandwidth communication between the processing elements, allowing users to scale applications to thousands of FPGAs.

The vector blade, called the X2, has four high-bandwidth, 25 gigaflop vector CPUs, along with 64 GB of shared memory, implemented as a four-way SMP. Each X2 node delivers more than 100 gigaflops (peak), and the system can be scaled to 1,024 shared memory processors with 16 terabytes of globally addressable memory. These blades go into dedicated vector processing cabinets, which are connected via the SeaStar network to at least one XT5 cabinet, which itself may be minimally configured.

Because of the global memory architecture of the X2, partitioned global address space (PGAS) languages like Co-Array Fortran (CAF) and Unified Parallel C (UPC) may be used. These languages allow developers to take advantage of the shared memory architecture of the X2. In some cases, you can achieve an order of magnitude improvements in both programmer productivity and runtime performance when compared to the MPI model. Silverman believes customers will buy the vector blades just to use the global memory architecture, whether or not they want to use the vector processors themselves.

The UK’s High End Computing Terascale Resource (HECToR) is Cray’s first hybrid deployment. The current machine consists of XT4 cabinets. They’ll be adding an XT5h vector computing cabinet, which will hooked up to the current system as soon the X2 hardware becomes available in 2008.

An application well-suited to hybrid architectures is climate simulation. The model consists of three main components: the atmosphere, the ocean, and the land. It turns out the atmosphere portion of the model is very well suited to scalar CPUs, like Opterons. But the ocean portion of the model can be easily vectorized and also benefits greatly from the high bandwidth memory access. The land model is also suited to scalar CPUs, but some sections of the code can be accelerated by offloading it to FPGAs.

“So the idea is that you would optimize this whole job by putting the right set of application pieces on the processor that can best execute the code, rather than try to fit everything into one architecture,” explains Silverman. “That, in a nutshell, is the benefit of a hybrid machine.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire