Computation on Demand: The Promise of Dynamic Provisioning

By By Luke Flemmer, Managing Director, Lab49

December 10, 2007

The concept of hardware virtualization — essentially the decoupling of the execution environment from the hardware substrate on which it runs — is not a new one. The term has been used to describe various such approaches since the 1960s. However, over the last couple of years, a particular flavor of virtualization has started to garner increased attention from progressive IT organizations.

This approach, known as server virtualization, refers to running multiple operating system instances on a single machine, without the need for a host operating system. This approach allows for performance of the virtual operating systems that is very close to the capabilities of the underlying hardware (i.e., virtualization overhead is very low). This removes what was a traditional objection to virtualization — namely that it suffered from the poor performance inherent in software emulation.

Virtualization is one aspect of the increasing sophistication of computational models. Along with compute grids (distribution of computational burden) and data fabrics (the associated distribution of data) it represents an increasing level of abstraction of the computational process. In a sense, it is part of the same continuum that has moved development from register level to compiled programming, and from there to high-level languages built on top of their own virtual machines. In all cases, the drive is toward a more generic and powerful abstraction that is not limited by the intrinsic characteristics of the local environment.

In more pragmatic terms, server virtualization has seen most of its recent adoption driven by its value in addressing a few primary areas: server consolidation, high availability, reliability and testing. Server consolidation refers to the recognition that, in many cases, organizations dedicate specific hosts to running key services. In some cases, this is because the service requires a particular operating system version or configuration; in others, it is to avoid potential interference with critical services by other processes sharing operating system resources. Over time, this can lead to a proliferation of dedicated hardware, all of which is lightly loaded. The ability to consolidate this hardware, using virtualization to provide discrete operating system instances, has proven to be low-hanging fruit for many organizations.

Benefits of high availability and reliability are related. The ability to manage applications as an entire operating system instance that can be quickly restored in case of failure, and the fact that these instances exhibit complete logical isolation even when sharing the underlying host, allow for improved manageability and recovery time and decreased failures due to unexpected operating system-level interactions.

Testing is an obvious use case, and one that is not limited to server virtualization. Even virtualization solutions that use emulation to run the guest operating system on top of a host operating system are extremely useful for testing. The ability to pre-configure operating system instances that can have software installed on them for testing, and then readily discard and re-instantiate them, has been leveraged by testing organizations for several years.

What is lacking in many virtualization efforts, however, is a high-quality provisioning model. It is one thing to take a large number of existing servers and consolidate them through virtualization. It is quite another to leverage virtualization to achieve the promise of on-demand computing.

Last year, Amazon.com launched a new service called EC2, which stands for “Elastic Compute Cloud.” EC2 represents Amazon’s effort to bring server virtualization to mainstream developers — and it is an impressive achievement. EC2 provides a complete model for on-demand computing on a broad basis. Users are able to boot pre-configured operating system images created by Amazon, other vendors or themselves. All instances have both public and internal IP addresses, and traffic over the internal network is both free and fast. The billing rate is per hour of instance uptime, based on public network traffic, and represents only a modest premium over what one would pay for a dedicated machine at a hosting vendor.

Amazon currently provides three logical instance types, evocatively named “Small,” “Large” and “Extra Large,” and ranging in power from the equivalent of a 32-bit 1.1GHz 2007 Xeon processor with 1.7GB of memory to the equivalent of  a 64-bit, quad-core 2.2Ghz machine with 15GB of memory, with cost more or less proportional to computational power. What is compelling, though, is how simple it is for users to scale this computational power dynamically. Once the environment is properly configured, a simple command line instruction can boot or shutdown an arbitrary number of hosts (typically limited to 20, but readily increasable to much higher numbers). For applications that are easily parallelizable — and this includes the bulk of Web applications that scale linearly with their ability to respond to requests — this provides an almost effortless model for managing computational capacity.

For developers working on distributed systems, the experience is even more compelling. No longer does the developer need to worry about provisioning physical hardware to create discrete hosts and to test the interaction between them. Instances can be booted in a matter of seconds, and Amazon provides a simple mechanism for providing configuration data to all instances via a predefined REST (REpresentational State Transfer) scheme. 

Due to security concerns, however, most Fortune 500 companies, especially those that have computation centers based on proprietary data (e.g., financial and pharmaceutical firms), probably will not be able to leverage EC2 directly. While it is possible that Amazon could evolve into a provider that is able to offer the requisite level of security assurance to such firms, it seems more likely that commercial usage will be limited to smaller companies, particularly Web-based start-ups. However, the large firms have a great deal to learn from the elegance of Amazon’s implementation. If they are not already, they should be seriously considering dynamic provisioning schemes along these lines.

For many firms, the capacity requirements of different groups are widely variable. In finance, for example, the load on trading, pricing and risk systems is heavily dependent on the economic calendar or events in the market. Trading activity associated with particular economic announcements can result in computational demands that are two orders of magnitude above those of normal periods. Similarly, for much scientific analysis, usage patterns are characterized by long periods of quiescence interspersed with intensive computation.

For large organizations, dynamic provisioning offers the promise of a statistical smoothing of these load profiles. Instead of adopting the standard approach, which is to specify the hardware capacity at a level that can scale to the peak loads but is severely underutilized the rest of the time, organizations could provision computation services where required from a computational infrastructure that is sized to the mean computational requirements of the organization. Much computation is uncorrelated between different groups, and the dynamic reallocation of services will allow for much more efficient and timely allocation of computing resources.

Further, the aforementioned trend toward abstraction implies a move away from knowledge of the underlying computational hardware. In most large organizations, developers and users of computational systems do not have physical access to the hardware on which their systems run. The systems are maintained somewhere in a datacenter and identified only by host-names. However, there remains a coupling between the logical host instance and the hardware that provides the computational power. Increasingly, this coupling will be seen as archaic, just as the coupling between the business goal and the CPU register used to hold an intermediate value now seems archaic to us. Amazon’s EC2 represents an interesting first vision of this future world.

About Luke Flemmer

Luke Flemmer is a managing director and co-founder of Lab49, a consulting firm that specializes in building advanced applications for global financial institutions, and advising firms on their technology strategy.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Intel’s Silicon Brain System a Blueprint for Future AI Computing Architectures

April 24, 2024

Intel is releasing a whole arsenal of AI chips and systems hoping something will stick in the market. Its latest entry is a neuromorphic system called Hala Point. The system includes Intel's research chip called Loihi 2, Read more…

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Research senior analyst Steve Conway, who closely tracks HPC, AI, Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, and this day of contemplation is meant to provide all of us Read more…

Intel Announces Hala Point – World’s Largest Neuromorphic System for Sustainable AI

April 22, 2024

As we find ourselves on the brink of a technological revolution, the need for efficient and sustainable computing solutions has never been more critical.  A computer system that can mimic the way humans process and s Read more…

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

Intel’s Silicon Brain System a Blueprint for Future AI Computing Architectures

April 24, 2024

Intel is releasing a whole arsenal of AI chips and systems hoping something will stick in the market. Its latest entry is a neuromorphic system called Hala Poin Read more…

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Resear Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire