A Modest Proposal for Petascale Computing

By Michael Feldman

February 8, 2008

In typical forward-thinking California fashion, the folks at Lawrence Berkeley National Laboratory (LBNL) are already looking beyond single petaflop systems, even before a single one has been released into the wild. LBNL researchers have started to explore what a multi-petaflop computer architecture might look like. Even ignoring the challenge of software concurrency, they point out that power and system costs will determine how such machines can be built.

To some extent, these costs are already constraining what can be built in the pre-petaflops era. To date, no one has bought a maximally configured version of any current leading edge supercomputer — for example, an IBM Blue Gene, Cray XT, or NEC SX system — not so much because users couldn’t make good use of the computing muscle, but because the initial cost of the hardware and the power to run them would have been prohibitive.

At last year’s SIAM Conference on Computational Science and Engineering, LBNL researchers Lenny Oliker, John Shalf, Michael Wehner authored a presentation about what kind of supercomputer would be required for a climate modeling system with kilometer-scale fidelity. They estimated that sustained performance of 10 petaflops would be required for such an application. They then extrapolated the power requirements and hardware costs of a 10 petaflop (peak) computer based on dual-core Opterons and one based on Blue Gene/L PowerPC system on a chip (SoC) technology. The 10 petaflop Opteron-based system was estimated to cost $1.8 billion and require 179 megawatts to operate; the corresponding Blue Gene/L system would cost $2.6 billion and draw 27 megawatts. The system costs are scary enough, but with energy rates at over $50/megawatt-hour and rising, you’d never be able to turn the thing on.

Since that estimate was made in early 2007, AMD has (sort of) released the quad-core Opterons and IBM has delivered Blue Gene/P. If one were to extrapolate the half petaflop Barcelona-based Ranger supercomputer to 10 petaflops, it would require about 50 megawatts and cost $600 million (although it’s widely assumed that Sun discounted the Ranger price significantly). A 10 petaflop Blue Gene/P system would draw 20 megawatts, with perhaps a similar cost as the Blue Gene/L.

The Berkeley guys took this into account in 2007, extrapolating that over the next five years or so power and cost efficiencies in processor technologies would increase by a factor of 8 to 16. Such an increase in energy efficiency would at least make the power requirements of a Blue Gene-type system reasonable. But even with a 10X decrease in hardware costs, a $200 million system price tag seems daunting, even considering inflation. (If you’re holding euros you might be in even better shape in five years.) In either case, rising energy costs are likely to offset some of the increased power efficiencies.

Unfortunately, the type of climate model envisioned will require more like 10 petaflops of sustained performance, which means something like 100-200 petaflops of peak performance will actually be needed. So now we’re back to billion dollar systems using tens or hundreds of megawatts.

The fundamental problem is that as we move below the 90nm process node, power and die area (and thus cost) is increasing faster than performance. The challenge will become how to get more performance from fewer transistors. One avenue the Berkeley researchers are looking at is the use of embedded processor SoC technology to construct ultra-low power, low-cost systems. A few HPC system vendors have already traveled down this road, namely IBM with their PowerPC SoC for Blue Gene and SiCortex with their MIPS64 SoC-based clusters. By using a larger number of slower and simpler cores, overall performance per watt is greatly increased. As long as the software can scale as well, application performance per watt can be an order of magnitude better than an x86-based system.

But the Berkeley researchers have something more in mind. Rather than exploiting general-purpose embedded processors like MIPS and PowerPC, they are considering semi-custom ASICs that contain hundreds of cores and achieve much better power-performance efficiencies than more generic solutions.

In general, customized ASICs are very expensive to design and manufacture for anything other than high volume applications — hence the attraction of FPGAs. But the consumer electronics market is changing the rules. In an industry that traditionally looked to the desktop and server space for ideas, embedded computing is now where the action is. With the proliferation of mobile consumer devices, entertainment appliances and GPS gadgets, and with the industry’s obsession with hardware costs and power usage, embedded computing has become a major driver for processor innovation.

One area the Berkeley researchers are looking at is configurable processor technology developed by Tensilica Inc. The company offers a set of tools that system developers can employ to design both the SoC and the processor cores themselves. A real-world implementation of this technology is the 188-core Metro network processor used in Cisco’s CRS-1 terabit router.

For practical reasons, the cores tend to be very simple, far simpler than even a PowerPC or MIPS core. But this is exactly what you want for optimal performance efficiency. One of the most compelling aspects to the Tensilica technology is that the hardware design and the associated software toolchain (compiler, debugger, simulator) are generated in concert, giving developers a reasonable path to system implementation. Even though the resulting SoC will only serve a domain of applications, the extra initial cost may be more than justified when you’re dealing with large numbers of chips and unrelenting power constraints.

The advantages of this approach for petascale systems are evident when you compare the 10 petaflop Opteron-based and Blue Gene-based systems mentioned above with one constructed from configurable processors targeted specifically to climate modeling. The Berkeley guys estimate that a system built with Tensilica technology would only draw 3 megawatts and cost just $75 million. True, it’s not a general-purpose system, but neither is it a one-off machine for a single application (like Japan’s MD-GRAPE machine, for example). With such an obvious cost and power advantage, the tradeoff between general-purpose and special-purpose computing seems like a good deal — again putting aside the software issues.

The real paradigm shift is thinking about supercomputers as appliances rather than as general-purpose computers. The LBNL researchers are focused only on petascale-level science applications like climate modeling, fusion simulation research or astrophysics, where hardware and power costs would seem to prevent a scaled up version of current architectures. The real trick though would be to generalize the model for mainstream computing.

A glimpse of how this might take shape was revealed in a recent IBM Research paper that described using the Blue Gene/P supercomputer as a hardware platform for the Internet. The authors of the paper point to Blue Gene’s exceptional compute density, highly efficient use of power, and superior performance per dollar. Regarding the drawbacks of the current infrastructure of the Internet, the authors write:

At present, almost all of the companies operating at web-scale are using clusters of commodity computers, an approach that we postulate is akin to building a power plant from a collection of portable generators. That is, commodity computers were never designed to be efficient at scale, so while each server seems like a low-price part in isolation, the cluster in aggregate is expensive to purchase, power and cool in addition to being failure-prone.

The IBM’ers are certainly talking about a more general-purpose petascale application than the Berkeley researchers, but one aspect is the same: ditch the loosely coupled, commodity-based systems in favor of a tightly coupled, customized architecture that focuses on low power and high throughput. If this is truly the model that emerges for ultra-scale computing, then the whole industry is in for a wild ride.

—–

As always, comments about HPCwire are welcomed and encouraged. Write to me, Michael Feldman, at [email protected].

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Mystery Solved: Intel’s Former HPC Chief Now Running Software Engineering Group 

April 15, 2024

Last year, Jeff McVeigh, Intel's readily available leader of the high-performance computing group, suddenly went silent, with no interviews granted or appearances at press conferences.  It led to questions -- what's Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Institute for Human-Centered AI (HAI) put out a yearly report to t Read more…

Crossing the Quantum Threshold: The Path to 10,000 Qubits

April 15, 2024

Editor’s Note: Why do qubit count and quality matter? What’s the difference between physical qubits and logical qubits? Quantum computer vendors toss these terms and numbers around as indicators of the strengths of t Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips are available off the shelf, a concern raised at many recent Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announced its second fund targeting €200 million. The very idea th Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. In a way, Nvidia is the new Intel IDF, the hottest chip show Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Computational Chemistry Needs To Be Sustainable, Too

April 8, 2024

A diverse group of computational chemists is encouraging the research community to embrace a sustainable software ecosystem. That's the message behind a recent Read more…

Hyperion Research: Eleven HPC Predictions for 2024

April 4, 2024

HPCwire is happy to announce a new series with Hyperion Research  - a fact-based market research firm focusing on the HPC market. In addition to providing mark Read more…

Google Making Major Changes in AI Operations to Pull in Cash from Gemini

April 4, 2024

Over the last week, Google has made some under-the-radar changes, including appointing a new leader for AI development, which suggests the company is taking its Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

Leading Solution Providers

Contributors

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire