Procter & Gamble’s Adventures in High-End Computing

By Michael Feldman

March 21, 2008

Software is one of Tom Lange’s favorite subjects — or least favorite, depending on his mood. Lange heads the modeling and simulation group at Procter & Gamble (P&G) and is responsible for enlisting computer technology to help develop the company’s vast array of consumer products. He is well-know in the HPC community as an outspoken evangelist for high performance computing in industry.

Last week, Lange spoke at the HPC Horizons Summit in Palm Springs, where a number of industry luminaries provided their perspectives on how users are pushing the envelope of HPC usage. This two-day event was organized by Tabor Communications, the parent company of HPCwire, and provided an opportunity for the HPC digerati to talk about emerging applications and bask in the 85-degree desert sunshine. Lange’s presentation was a mostly feel-good story of how one company has used HPC to help create some common everyday products.

With over $76 billion in revenue last year, Procter & Gamble is the largest consumer goods company in the world. The company uses high-end computing to design, test and manufacture a wide variety of consumer products (as well as the packaging they come in). A short list of HPC-enabled products includes Pampers diapers, Downy bottles, Braun shavers, and Pringles potato chips. As in many HPC applications, the idea is to replace physical research and development with computer simulations. When you’re talking about designing leak-proof diapers, the advantages of avoiding wetlab conditions become more obvious.

Unlike HPC-crafted products such as commercial airplanes or Formula One race cars, P&G consumer products are produced by the billions. So materials and manufacturing costs are as critical to product design as usability. With an average P&G product price of under $10, there’s a huge incentive to minimize packaging and simplify assembly. Usability is still a big challenge since fussy consumers are going to demand an array of conflicting characteristics: Materials must be strong, but soft, even when wet; they must stretch but not break. Liquid mixtures must be easy to dispense, but be thick enough to stay in place when they’re applied. Packages must be strong, lightweight, leak-proof, safe to handle, but easy to open.

Something as apparently simple as Tide laundry detergent could require as much computer modeling sophistication as a Boeing 747. For example, liquid detergent may require three distinct modeling applications — one for soap characteristics, one for the bottle design, and one for filling the bottle on the assembly line. So this single product may suck up different computing resources and require a complex set of software that involves CFD, FEA and CAE codes.

On the positive side, computing is getting cheaper every year. P&G has seen the price of hardware drop from around a $1.50/CPU-hour in 2001 to $0.15/CPU-hour in 2007. Whereas other manufacturers have used the lower-cost FLOPs to reduce IT expenditures, P&G wants to take advantage of the increased price-performance to expand research. With more than 40 individual brands that net over a $500 million each in revenue, there is plenty of incentive to improve the manufacturability and usability of their product set.

According to Lange, the next set of challenges for designing consumer goods will be to inject more realism into the simulations, for example, using nanoscale chemistry modeling to predict the biochemical behavior of skin lotions, or using biomechanical simulations to measure the ability of a child to open a lid. This type of application is within reach today, but usually only on top tier supercomputers. Since industry tends to lag the top systems by a generation or two, the current teraflop systems used by large commercial users like P&G are five or ten years behind the curve, performance-wise.

Lange is actually much less worried about getting enough computing muscle than he is about the software. By 2010, he expects the cost of computing hardware to drop to just a few cents/CPU-hour. But since that hardware will be implemented with lots of parallelism, the current core-based licensing models will put software costs onto a Moore’s Law trajectory. Like many users, Lange is frustrated that the advantages of more powerful hardware are being overwhelmed by the increasing cost of the software.

He’s not alone. There was plenty of angst expressed about software costs during the HPC Horizons Summit. Both vendors and users see licensing costs as a big impediment to expanding HPC usage. Part of this problem is cultural. People aren’t yet used to the idea that software is a much more valuable commodity than hardware, since, up until recently this wasn’t the case. Also, in an era when open source is making software tools and operating systems widely available, people can convince themselves that “free” software has no cost associated with it.

Lange admits he doesn’t know how the marketplace will resolve this. P&G uses software from both commercial sources, like ANSYS, and DOE national labs, like Lawrence Livermore and Sandia. Up until now at least, Lange’s simulation and modeling group has not attempted to maintain codes internally because of manpower costs. Developing in-house codes represents the ultimate in control, but for P&G that would represent a significant shift in computing strategy. Lange admits that the establishment of a large in-house software engineering group is not a good fit with the business culture at P&G, which stresses long-term career paths and promoting from within. The company prefers to concentrate on what it does best — understanding consumer needs and making the products that fill those needs. Ultimately, P&G would like to be a user of HPC and not a developer. I’m guessing, that attitude reflects the feelings of most commercial users.

At the end of Lange’s presentation, he asked a number of tough questions about the business case for software in an increasingly parallel world:

  • If commercial software is not affordable, are users willing to write our own?
  • Are the ISVs investing enough in R&D to parallelize their codes?
  • Are the DOE national labs seen as competitors with ISVs?
  • Is shareware and freeware development a religious/political choice?
  • Are we investing enough in software research?

I didn’t notice any commercial application software vendors at the HPC Horizons Summit, but it would be great to see some of the ISV leadership weigh in on this discussion. If a company like Procter & Gamble with deep pockets and a obvious commitment to HPC starts to balk at software affordability, it’s probably time for the whole community to get serious about this topic.

—–

As always, comments about HPCwire are welcomed and encouraged. Write to me, Michael Feldman, at [email protected].

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire