Transforming Big Data

By John E. West

March 28, 2008

The increasing spread of sophisticated instrumentation, and the dramatic increase in the capability and use of computers in all fields of human endeavor, have led to a dramatic growth in the amount of data we humans collect. A recent study by IDC puts the amount of data produced in 2007 worldwide at 281 exabytes, a 56 percent increase over the amount of data produced in 2006. While that number itself is subject to some debate, the trends are real.

What kind of data is this? A lot of it, according to IDC’s report, is digital imagery, both moving and still. But much of it is data measured or captured as a result of scientific and business processes: data streams related to national security and homeland defense, personal and organizational financial transactions, massive space and earth observing systems, and so on. The amount of data produced by the financial markets alone quadrupled last year.

But data isn’t information — in order to influence a course of action data have to be processed, assimilated and put in context for the people or systems making decisions. The field of data intensive computing, which has been around for a while now, is all about developing the systems and software that can facilitate this data transformation.

At the National HPCC Conference in Rhode Island this week, John Grosh, director of the Center for Applied Scientific Computing at Lawrence Livermore National Lab, gave a talk that touched on some of the work Livermore is doing in this area. The Livermore team is working, as are many others in the field, to identify the machine architectures, software design points, and tools needed to enable rapid processing of stored data in applications ranging from security and intelligence to climate science. The issue that they are addressing, even with “small” datasets in the terabytes, is that the interaction with disks in a traditionally architected HPC system can be quite painful when I/O performance matters. Some vendors in HPC are addressing this concern by building large shared memory systems to hold the data in-memory. This is an effective solution, but it can also be expensive. The Livermore team is looking at alternative architectures from the business intelligence (BI) community, along with technologies like NVRAM (non-volatile memory), flash memory drives, and so on.

As Grosh pointed out, the shift that is needed goes to the core of system design. Disk vendors have largely focused on capacity rather than bandwidth, and many supercomputing applications avoid I/O as much as possible. In data intensive applications, this view is turned on its head: it’s all about moving stored data in for processing, and pushing transformed data out. According to Grosh, NVRAM technology may be very important on the hardware front in the future of data intensive supercomputing. It offers an architecturally “clean slate” that doesn’t carry any of the design culture of disk storage along with it, and it may be able to fill the gap between DRAM and disk with respect to both price per capacity and access speed.

Pervasive Software is one of the companies working on the software front of the data intensive computing space, developing software architectures to support intensive analysis of large data stores. Pervasive’s DataRush product is designed primarily for single address space environments of the kind you’ll find in multi-socket, multicore nodes on today’s hardware. The framework is based on a dataflow model, written in Java, and provides high level primitives that mask the complexity and details of the parallel implementation. According to Pervasive CTO Mike Hoskins, DataRush is a “next generation massively parallel data pump.”

There is a lot in that paragraph to give lifetime HPTC professionals a chill. “Masking complexity” has long been synonymous with prohibiting access to the very details that determine performance. And Java? Isn’t that too slow?

Hoskins stresses the need to act on the reality that the value elements in supercomputing are not the machines anymore, but the people. “A lot of the supercomputing industry is stuck in a bit of a time warp,” said Hoskins speaking to HPCwire in April of 2007. “I started with mainframes and assembly programming. In those days machines were expensive and humans were cheap. Now, it’s turned around completely. The constant focus on machine performance really misses the boat.”

Pervasive is targeting DataRush — at least initially — in areas like business, bioinformatics, and finance; domains where Java programming is already popular. And recent versions of Java have overcome many of the earlier performance problems associated with garbage collection, making it a viable option for in some cases.

Jim Falgout, solutions architect with Pervasive, explains that a core advantage of the DataRush approach with Java lies in its ability to dynamically adjust to available resources. Data flows and processing steps are described in an XML scripting language that moves data through the system, and transforms it by the application of “operators” such as sort, join, average, and merge. (As of later this year the XML description can be replaced by a Java description of the dataflow.) The framework includes basic operators, and users add new operators to support their specific needs through an SDK. DataRush dynamically assembles the bits of code it needs at runtime and, if desired, users can help the software adapt to varying amounts of available processing power and varying problem sets by binding in operators and operator implementations that are better suited for the situation at hand. This is reminiscent of the poly- or multi-algorithmic work that has been going on in traditional HPTC for some time, and has the potential to offer real advantages.

An article in Java Developer Journal this week by Pervasive’s Falgout outlines an application of DataRush dealing with large volumes of data, and the highlights some potential advantages that processing outside an RDBMS offers for structured analytic queries. In the article Falgout describes an effort to de-duplicate a database of tens of millions of records. At the end of one month of development and tuning, Falgout’s team was able to demonstrate a record comparison rate of more than one million candidate pairs per second running on a four way quad-core Xeon HP Proliant node.

Another interesting outcome arose from tuning the report used to roll up results for the customer. Their customer had developed a SQL query to avoid presenting duplicate decision pairs in selecting which member of a possible duplicate set should “win.” The query ran in 3 hours on 14 million matched pairs. Using DataRush Falgout’s team coded an operator in Java to perform the logic previously handled in the SQL, and reduced the runtime to only 22 seconds.

There is a lot that we still don’t know about the architectures, tools and techniques needed to effectively process the data we are amassing at work and at play in much of the first and second world. But, as with multicore programming techniques, data intensive computing provides the HPC community the opportunity to leverage products and models developed in the commodity community to advance the state of the art in our own field.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire