Compilers and More: The Dangers of COTS Supercomputing

By Michael Wolfe

April 4, 2008

One of the last events at Supercomputing 2007 (SC07) was a panel titled “(Super)Computing on FPGAs, GPUs, Cell and Other Exotic Architectures” on Friday morning.

Jack Dongarra (Univ. Tennessee and ORNL) said that the HPC ecosystem is out of balance; we’ve invested heavily in hardware development, and now we need to invest more heavily in software tools and methods to use the hardware. Rob Pennington (NCSA), the panel moderator, said that the tools will appear when there are enough of these systems out there that the vendors can make money at it. I disagree with both these statements.

In response to Jack Dongarra’s statement, I agree that the investment in software tools for high performance computing has been lacking, but it’s been equally limited for hardware. While I didn’t do a comprehensive survey on the exhibit show floor at SC07 in Reno, almost all the machines displayed there were built from COTS (commodity off-the-shelf) processors, mostly x86-64 from Intel and AMD, some PowerPC from IBM, and in some cases, SPARC and MIPS. Any innovation seems to be in the interconnect, packaging, power, and cooling. Notable exceptions are traditional vector supercomputers from NEC and Cray, and the ClearSpeed accelerators. It seems the HPC market can’t support processor development; current process technology is just too expensive.

There is a great deal of hype and promise for accelerators. However, even here we depend on the commodity market to drive the technology and development, and hope to gain what benefit we can. We are in the dangerous position of depending on the scraps that fall off the PlayStation table — and if they take their picnic and go somewhere else, we’re in real trouble. If you think this is silly, try asking NVIDIA to add a feature to their graphics cards that will speed up your application but will hurt graphics performance. I can hear the laughter already.

Of more concern is what may happen with the mainstream processor business. AMD and Intel have already announced quad-core chips, with plans for eight and more. David Scott (Intel), at a focus session in the HP-CAST user group meeting the Saturday prior to SC07, noted that if you are willing to give up single-core performance, you can put a lot of cores on a single chip, with today’s technology. There are many applications where such a strategy makes a great deal of sense: web services, database transactions — anything that responds to many small, independent requests. Think Google. In fact, most computing might fall into that market, where single thread performance doesn’t matter, only the total throughput.

But not HPC. Imagine having to expose and manage five or ten times more parallelism just to deliver the same performance as a single thread today. To get actual performance improvement, you need yet another factor of parallelism.

But guess who will win that architecture argument.

As for software, the dominant programming model for parallel computers hasn’t changed in almost 20 years, except to replace PVM with MPI. (I count substituting C or C++ for Fortran as a giant step sideways.) Perhaps this is inevitable. Douglass Post (DoD, HPCMP) pointed out at the SC07 panel that the lifetime of a large code is 20 to 30 years, whereas the lifetime of any large HPC system is more like 3 to 4 years. Portability, including performance portability, is more important than peak performance on any one system.

One of PGI’s consultants told us that today’s programmers like the MPI model, if only because it makes their lives easier. They can concentrate on porting and tuning today’s algorithms and programs to MPI, which is a lot of work, but not too mentally demanding. If we move to a model where parallel programming is less work, they’ll have to take on the task of finding better parallel algorithms, which is much more challenging.

So, to correct Jack Dongarra, the problem isn’t balance. The HPC ecosystem is in perfect balance, with little investment and innovation in both hardware and software. We’re in a precarious position now.  The community is able to benefit from the COTS market, but it’s anyone’s guess how long we’ll be able to thrive there.

In response to Rob Pennington, I believe that the HPC market is too small to support an aggressive hardware business, and it’s equally true that it’s too small to support a software tools industry. It may be hard to justify the cost of a large HPC hardware installation, but at least you can proudly give tours of the machine room. It’s hard to justify a large software budget, when all you get is a CD and a book (if you’re lucky).

Take compilers as an example, something near and dear to my heart. Historically, compiler development was taken on by the processor vendor and subsidized by that business. Compilers — and operating systems — hardly generated enough revenue to pay for themselves, but they were strategic investments by the vendors. Today’s HPC compilers are supported by the workstation business, and largely driven by it.

The hope has been that workstations were as complex today as yesteryear’s supercomputers, and need the same complex compilers and tools. So there is a natural fit in requirements and solutions. But some tools are hard to build, notably compilers. If compilers were easy, we wouldn’t have library-based solutions (BLAS, Linpack, MPI, etc.), we’d have extended the languages and compilers to solve those problems. Creating, supporting, and supplying these tools is a big investment and commitment. In almost every problem space, a software vendor can make more money applying that investment and commitment to a larger market than HPC. If HPC users will also buy it, that’s great, but it’s not enough to drive the market. I’m sure that statement will produce a plethora of rebuttals from HPC software vendors, but I’d ask how much of the revenue for those products is for non-HPC platforms.

Many HPC sites act as if they believe they can (or have to) develop all their own software internally. They’ve become a community of blacksmiths, building their own tools, and proud of it, with little need or desire for third party software. To be fair, the HPC market is volatile enough that a certain amount of FUD about dependence on independent software vendors can be justified.

To correct Rob Pennington, the tools will appear only if and when they apply to a larger market, or if some company (unlikely) or government agency (perhaps likely) chooses to make a long-term strategic investment.

—–

Michael Wolfe has developed compilers for over 30 years in both academia and industry, and is now a senior compiler engineer at The Portland Group, Inc. (www.pgroup.com), a wholly-owned subsidiary of STMicroelectronics, Inc. The opinions stated here are those of the author, and do not represent opinions of The Portland Group, Inc. or STMicroelectronics, Inc.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pressing needs and hurdles to widespread AI adoption. The sudde Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire