NICS Unleashes ‘Kraken’ Supercomputer

April 4, 2008

New system prepares for transformational science

The National Institute for Computational Sciences (NICS) is the newest member of an elite supercomputing community. Dedicated on April 3, the organization — formed through a National Science Foundation (NSF) grant to the University of Tennessee and its partners — is on its way to delivering a soon-to-be petascale system that promises substantial contributions in the effort to solve the world’s greatest scientific challenges, such as understanding the fundamentals of matter and unlocking the secrets to the origin of our universe.

The system, a Cray XT4 dubbed Kraken (after a gargantuan sea creature in Norse mythology), will come online in mid-summer and is expected to feature more than 18,000 2.3GHz AMD high-performance cores delivering 170 teraflops of performance. A new Cray-designed interconnect, featuring Cray SeaStar2 chips and high-speed links, will greatly increase reliability and provide for excellent scaling while eliminating the related cost and complications of external switches.

NICS is seeking “large, tightly coupled applications,” to take advantage of the newly-designed Cray interconnect, said NICS Project Director Phil Andrews. Currently a dozen large-scale applications are poised to run at NICS, spanning a diverse range of scientific fields including climate, fusion energy, biology, lattice QCD, and astrophysics. “ENZO cosmology simulations exhibit near-ideal scaling to 8,000 cores on the XT4,” said Michael Norman, a professor of physics at the University of California, San Diego. “Clearly even larger simulations are possible. This opens up all kinds of new frontiers in understanding cosmic evolution.”

Climate also figures to play a large role in Kraken’s research potential. As climate change continues to gain prominence both in the policy and scientific arenas, powerful systems such as Kraken will play an ever-increasing role in all types of climate simulations, from CO2 cycles to the role of ocean currents. Just as previous efforts in eastern Tennessee contributed substantially to the recent Nobel Prize given to the United Nations’ Intergovernmental Panel on Climate Change, Kraken also will greatly contribute to man’s understanding of his impact on the planet.

The Cray XT4 will ultimately evolve into a Baker system featuring more than 10,000 compute sockets, 100 trillion bytes of memory, and 2,300 trillion bytes of disk space. It will provide more than 700 million CPU hours per year and one petaflops of performance, making it the nation’s most powerful academic supercomputer.

Kraken is designed specifically for sustained application performance, scalability, and reliability and will incorporate key elements of the Cray Cascade system to prepare the user community for highly productive petascale science and engineering. The Cray XT4 will continue to operate in support of users until the Baker system is in full production.

The system, and the resulting NICS organization, are the result of an NSF Track II award of $65 million to the University of Tennessee and its partners to provide for next-generation high-performance computing. The award was won in an open competition among high-performance computing (HPC) resource institutions vying to facilitate America’s continued competitiveness via the next generation of supercomputers.

The NSF used a series of system performance-related benchmarks as a key factor in the selection process, setting the stage for the future of simulation research by employing a system that is usable and reliable and well-suited to computationally-intensive scientific issues, such as protein shape and function and climate modeling.

As the foundation for NICS, (a collaboration of universities, research institutions, and HPC industry leaders), the new system will be fully linked to the NSF-supported TeraGrid, a network of supercomputers across the country that is the world’s largest computational platform for open scientific research.

The NSF award places the University of Tennessee among a select group of supercomputing facilities, including the University of Illinois at Urbana-Champaign and the Texas Advanced Computing Center, likewise an NSF-funded facility. Due to the collaborative relationship between the University of Tennessee and Oak Ridge National Laboratory, NICS promises to deliver state-of-the-art scientific research.

For instance, a team led by Erik Schnetter of Louisiana State University is seeking to understand the merger of binary black hole systems through mesh refinement and multi-block methods and numerical and Einstein-based equations. In particular, these heavily computational simulations will focus on the spins, velocities, and masses of black holes in binary systems.

Another team, led by Carlos Simmerling of the State University of New York at Stony Brook, is seeking to increase our knowledge of biomolecular structure and dynamics. The project’s simulations are shedding light on areas such as possible drugs for the treatment of tuberculosis, the reasons for drug resistance in HIV/AIDS, and the biological role played by the anti-cancer drug Taxol.

Other projects explore galaxy formation and the properties of nanostructures, just to name a few.

“Combined with the more traditional approaches of theory and experiment, scientific computation is a profound tool for insight and solution, as researchers move their problems for modeling and simulation from existing terascale systems to petascale systems later this year and onward to exascale (quintillion calculations per second) systems in the next decade,” states Thomas Zacharia, vice-president for science and technology at UT and the associate lab director for computing and computational sciences at Oak Ridge National Laboratory.

Allocations on the NICS system may be requested via the TeraGrid proposal form. Details about the types and sizes of awards are found at Teragrid Allocations and Accounts (http://www.teragrid.org/userinfo/access/allocations.php), or by calling TeraGrid (toll-free at 1-866-907-2383). NICS is currently fielding requests for projects that will make effective use of more than 10,000 cores for capability jobs. Due to the fact that Kraken is an NSF-funded system, all open science research in the United States is valid for consideration. However, those overseas are also welcome to apply if they are currently working with a researcher based in the United States.

NICS offers researchers a great opportunity to begin to port and scale code on a system that will ultimately move to the petascale. For more information, visit the NICS Web site at www.nics.tennessee.edu.

—–

Source: University of Tennessee

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire