Sun’s Fortress Language: Parallelism by Default

By Michael Feldman

July 16, 2008

If anyone knows how to introduce a new programming language, it’s Sun Microsystems. The company’s highly successful Java language, which was introduced in 1991, has become ubiquitous in network-centric and embedded computing. Today, there’s a whole research team at Sun Labs devoted to programming languages, and the big project there in recent years has been the development of the Fortress programming language. The end game is to “do for Fortran what Java did for C.”

Unlike Java though, Fortress is geared for HPC applications, with programmability as a major design goal. The language maintains a high level of abstraction for the developer, allowing the focus to be on the algorithm rather than the underlying hardware. And even though Fortress specifically targets high-end technical computing, it is also applicable to large-scale parallel applications of almost any type. “We were looking for a language that was good for multicore, for supercomputing, and for everything in between,” explains Eric Allen, principal investigator of the programming languages research group at Sun Labs.

The project began in 2003 and was originally funded out of DARPA’s High Productivity Computing System (HPCS) program. When Sun was dropped from HPCS in Phase III of the program, Sun Labs took over the Fortress R&D completely. But since Sun has made Fortress an open source project, the company has received a lot of outside help from universities and other researchers that have contributed to the design and implementation of the language. The University of Tokyo, the University of Virginia, and University of Aarhus in Denmark are all developing new Fortress libraries, while Rice University has been working on compiler optimizations.

Although the basic foundation is now fairly stable, the language specification is not written in stone. Version 1.0 of the compiler and runtime was launched in April of this year and represents a prototype for users who would like to kick the tires and offer some feedback. According to Allen, Sun is updating the spec as new features are added or current ones are refined and is incorporating the changes into the language as appropriate. The intention is to release new distributions every few months. Allen says a production version of the compiler is expected in 2010, or thereabouts.

The current prototype runs on top of a standard Java Virtual Machine (JVM), so just about anyone with a computer can give Fortress a whirl. Sun offers the latest distribution free on their Project Fortress site. For performance reasons, Allen expects that at some point more of the runtime will be statically compiled rather than interpreted, but right now the convenience of the JVM is enabling widespread experimentation. He says they’ve already received a lot of good suggestions, especially from the academic community.

Allen himself teaches a programming course using Fortress at UT Austin. According to him, the kids there are enthusiastic about writing code with it and are amazed at how concise Fortress programs are compared to other languages they’ve used.

The language itself supports both task and data parallelism. Most of the constructs assume concurrency unless the programmer explicitly specifies sequential execution. So parallel computation is automatically performed underneath the covers as a result of standard source code execution (assuming the underlying platform has more than a single core). For example, basic operations like for-loops are parallelized by default. Even computing arguments that are to be passed to a function are performed in parallel. “In fact, everywhere where we could possibly add parallelism into the language, we added it,” says Allen.

The runtime implicitly farms out computations to the available processor cores using a fine-grained threading model. As cores becomes idle, the runtime will transparently steal work from overloaded parts of the system and move those computations to the unused cores. The language also provides for explicit threading under the control of the programmer. Atomic operations are executed using a transactional memory scheme instead of the old-style locks.

For clusters, where the locality of the computation becomes an issue, the language has both implicit and explicit methods of distributing data. By default, Fortress arrays are spread across a system with the default arrangement determined by the Fortress libraries. This allows the implementation to use target-specific libraries for machines with similar locality characteristics. Fortress also has the notion of a “distribution,” which permits the programmer to explicitly specify both distribution of data and locality information for scheduling.

Probably the most distinguishing feature of Fortress is its support for mathematical notation. The goal here is to make the step from algorithm specification to source code as short as possible. To do this, the language supports 16-bit Unicode characters and specifies ASCII keyboard sequences that are rendered into mathematical notation. The current Fortress distribution includes an extension to the Emacs text editor that will convert these keyboard sequences as they are typed. The language designers’ devotion to this type of notation created some challenges for the compiler’s parser. For example, the use of whitespace between two operands to indicate multiplication (e.g., x y) requires some natural language smarts to determine the intention of the programmer.

Below is an example of Fortress code using some math notation. It’s the NAS (NASA Advanced Supercomputing) Conjugate Gradient Parallel function, a well-known HPC benchmark:

Fortress also allows for the creation of new grammars, so many types of domain-specific formulations are possible. For example, the molecular dynamics community could conceivably create a customized syntax for applications under its domain. The language enables these new grammars to be incorporated via library additions.

But with any new language, even a technically superior one, widespread adoption is elusive. Sun believes that maintaining Fortress as an open source project will go a long way toward attracting a larger audience. Allen says they are taking negative feedback seriously and are committed to letting the outside community help shape the design. The company hopes that giving people a stake in the language’s evolution will help drive a sense of ownership.

The notion of allowing the language to evolve is one of the central themes of the Fortress designers. Wherever possible, language features have been implemented in libraries rather than in the compiler proper to allow for alternative implementations and a more flexible upgrade path. “Fortran has been around for about 50 years,” says Allen. “I think it’s incumbent upon any design team for a new language to have that sort of timescale in mind when thinking about how their design is going to weather with time.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pressing needs and hurdles to widespread AI adoption. The sudde Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire