Intel Lifts the Curtain on Larrabee

By Michael Feldman

August 4, 2008

In a press briefing on Friday, Intel representatives revealed some of the architectural details of the company’s much talked-about Larrabee processor. The new design is the chipmaker’s first manycore x86 platform and represents what could be described as a general-purpose, x86 vector processor, combining features from both GPUs and CPUs. The architecture is the culmination of more than three years of R&D accomplished under Intel’s terascale research program. The company will present a paper at the SIGGRAPH 2008 conference next week in Los Angeles, which will elaborate the design of the processor and its programming model.

The idea behind Larrabee was to jump to the front of the line in GPU programmability, while at the same time deliver an x86 vector processor that can be applied to a wide range of high throughput applications. The new architecture’s applicability to visual computing is a result of its general suitability for HPC applications, rather than any GPU-specific capabilities. In fact, Intel characterizes Larrabee as a generic high throughput processor, rather than a GPU. Emphasizing Intel’s intentions for the new architecture, Larry Seiler, senior principal engineer on the project said that “Larrabee is going to revolutionize graphics processing and supercomputing.”

For the most part, Friday’s briefing left out product plans for the new processor. Neither core count, clock speed, nor power consumption was mentioned, and product launch dates were only talked about in the general timeframe of “2009 or 2010.” A lot of the discussion focused on Larrabee’s role as a high-end GPU for the PC, its initial target market. By entering the high-end volume graphics space, Intel hopes to extend its strong position in the mobile GPU market to desktop gaming.

If it meets with success there, Intel is almost certain to push the platform into the HPC market, where its vector capabilities and x86 compatibility would make it an instant contender against other high-end accelerators like NVIDIA’s Tesla products (and other CUDA-supported GPUs), AMD’s FireStream GPU offering, Cell processor systems, ClearSpeed co-processors, and even FPGA accelerators. But in Larrabee’s case, no external host processor will be required since CPU logic is already on the chip.

Unlike the typical GPU of today, Larrabee has a number of important differences. The overall layout of the chip consists of a number of x86 cores connected to each other via a high speed ring bus, 512 bits wide in each direction. The cores are derived from Intel’s Pentium processor, with its short, in-order execution pipelines. In this case though, each core executes up to four threads at a time and contains both a scalar and a vector unit, with the latter able to execute 16 32-bit operations per clock tick. Since Larrabee is basically a CPU architecture, features like context switching, preemptive multitasking, virtual memory and page swapping are built in. And because thread management is done in software, latency can be hidden with conventional parallelization techniques.

Each core contains Level 1 instruction and data caches, with Level 2 cache provided on chip as well. L2 cache is shared between cores, with 256 KB allocated to each one. Unlike GPUs, cache coherency is maintained throughout the cache hierarchy, which enables a software friendly framework for inter-processor communication an efficient mechanism to share data between application threads. Memory controller (or controllers) are on-chip too, as well as application-specific fixed function units.

In general though, a Larrabee processor intended for graphics workload uses very little fixed function hardware. Almost all processing is intended to be performed with software on the x86 cores. In certain cases, notably the texture shader, Intel has added fixed function hardware to boost graphics performance. The rationalization for a mostly graphics software pipeline is that requirements for various functional units (vertex shading, rasterization, pixel shading, etc.) can vary quite a bit from application to application. So workload balancing will be easier to achieve with general-purpose silicon plus software, as opposed to dedicated hardware. That also means that application performance should scale more evenly as additional cores are placed on the die.

To even the playing field in the graphics space, Intel will support DirectX and OpenGL so that existing applications can be ported more easily. A Larrabee-specific API will also be provided for more adventurous programmers who are interested in taking advantage of the full capabilities of the processor. Access to the vector instruction set, which has yet to be described, will be available via C language intrinsics. The vector unit will support IEEE single and double precision floating point operations as well as 32-bit integers.

Even though Larrabee is being characterized as a manycore chip, the first versions will probably have tens of core, rather than the hundreds of cores currently present in the NVIDIA and AMD (ATI) GPUs. Depending on clock speed, Larrabee’s raw performance may even be less than that of traditional GPUs. For example, even with the impressive 16 single precision operations per clock (per core), a 1.0 GHz Larrabee chip would need 62 cores to equal the performance of the latest teraflop GPUs from NVIDIA and AMD that will ship this year. Presumably Intel will find the formula to at least match the performance of the competition. But its claim of superior programmability may resonate more than raw performance, especially with software vendors who are looking for more flexibility in developing new types of applications, graphics or otherwise.

Introducing a new architecture into a mature market is always a risky proposition, which Intel itself learned from its Itanium adventure. But the chip vendor is a huge force in the industry and has more than a year to line up ISV and OEM support for Larrabee. Its success in the graphics space will likely determine if the processor becomes a commodity part for HPC. In a way, that’s unfortunate, since Larrabee is probably a better fit overall for high-end technical computing than for the more narrow domain of visual computing. Either way, the competition among Intel, AMD and NVIDIA is bound to get more interesting.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

Nvidia Appoints Andy Grant as EMEA Director of Supercomputing, Higher Education, and AI

March 22, 2024

Nvidia recently appointed Andy Grant as Director, Supercomputing, Higher Education, and AI for Europe, the Middle East, and Africa (EMEA). With over 25 years of high-performance computing (HPC) experience, Grant brings a Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Houston We Have a Solution: Addressing the HPC and Tech Talent Gap

March 15, 2024

Generations of Houstonian teachers, counselors, and parents have either worked in the aerospace industry or know people who do - the prospect of entering the fi Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire