Complete Genomics Takes Off

By Tiffany Trader (HPC)

October 15, 2008

Last week, San-Francisco-based Complete Genomics came out of stealth mode to become the first provider of large-scale human genome sequencing services. They claim to offer a third-generation genome sequencing technology that generates genomic data at a higher throughput than existing approaches and at lower cost.

What makes Complete Genomics different is that they are offering human genome sequencing as a service through their commercial-scale genome center. The technology and business model combine to enable large-scale human genomic population studies, thereby providing the basis for significant genomic analysis. By gathering and analyzing a large amount of genomic data, an individual’s genetic profile data can be applied to disease prevention and management.

HPCwire recently asked company representatives to share some details about their work. Complete Genomics Chairman, President and CEO Dr. Clifford Reid and Vice President of Software Bruce Martin took the time to respond.

HPCwire: Can you describe the sequencing service and talk about the practical significance of its use in health care?

Dr. Clifford Reid: Complete Genomics is offering the industry’s first large-scale human genome sequencing service for $5,000 per genome. We plan to sequence 1,000 complete human genomes in 2009 and 20,000 genomes in 2010. For the first time, companies and research institutions will be able to run large-scale complete human genome studies to understand the genetic basis of disease and drug response.

HPCwire: Can you provide a brief description of the technology pieces that make this sequencing service possible?

Reid: Complete Genomics has developed two breakthrough technologies that enable us to offer complete human genomes for $5,000. The first is a new method for creating extremely high density DNA arrays, which dramatically reduces the reagent and imaging cost of DNA sequencing. The second is a new ligation method of reading DNA, which dramatically reduces the reagent cost while maintaining the high accuracy of ligase-base DNA sequencing.

HPCwire: What is unique about the business model that allows you to do this?

Reid: By selling services rather than instruments, Complete Genomics is able to eliminate the burden of purchasing and operating complex and expensive DNA sequencing instruments, and eliminate the burden of building and operating a high-performance datacenter.

HPCwire: How big do you think the market is for your service?

Reid: Complete Genomics believes the market for large-scale complete human genome studies will be $3-5 billion in five years.

HPCwire: What would prevent competitors from copying your approach?

Reid: Complete Genomics owns or has licensed 110 patents and patent applications worldwide to protect our technology.

HPCwire: You quote a $5,000 price tag on the service for one genome in Q2 2009. What is the cost of a complete human genome sequence today?

Reid: Complete Genomics sequenced a complete human genome in July for $4,000 materials cost — that does not include equipment, labor, or overhead costs. When we launch our commercial service in Q2 2009 we expect our materials cost to be under $1,000 per genome, and our $5,000 price will cover all of our costs.

HPCwire: Focusing on the computational aspect of the service: What specific types of compute and storage system or systems are being employed to analyze the genetic data?

Bruce Martin: Complete Genomics uses a high-performance computing cluster, built using commodity servers (currently with Intel CPUs), Linux and other open source platform software, and clustered NAS systems.

HPCwire: What software is being used to do this and what is its source – proprietary in-house, commercial ISV, or open source?

Martin: Our system has an an open source platform with Linux, Sun Grid Engine and other management/operations tools. And we have proprietary applications for data analysis, base calling, alignment and assembly, which are all built in-house.

HPCwire: What percentage of the total expense of the infrastructure is represented by the computational infrastructure?

Martin: Computing is roughly 50 percent of the cost today. We expect that to decrease as a fraction of total cost over time.

HPCwire: Do you have HPC expertise in-house to help with the management of the compute resources and the data analysis? If so, could you briefly describe that expertise?

Martin: Yes, Complete Genomics has an experienced multi-disciplinary team, with world-class expertise in bioinformatics, in particular image processing, base calling, alignment, assembly and other areas of sequence analysis. We also have extensive knowledge of high-scale scientific computing, including monte carlo simulation, machine learning, and graph-based algorithms. Other proficiencies include large data set search and indexing, and datacenter operations and management.

HPCwire: Are you counting on projected increases in computational power to drive the growth strategy (1,000 genomes in 2009; 20,000 in 2010), and/or are you also intending to increase computational infrastructure? Or are there other pieces of technology or the business model that you intend to ramp up over the next couple of years?

Martin: Both — Complete Genomics will deploy significantly more infrastructure, and we plan to do so in a modular manner, thereby taking advantage of improvements in basic computing technology, for example, larger/faster disk drives, and faster and lower-power CPUs.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire