The Greening of Renault’s Formula One CFD Program

By Michael Feldman

November 19, 2008

Because of the compute and power density of petascale systems, all new supercomputer facilities are being built with energy efficiency in mind. This includes that new supercomputer center at the University of California at San Diego and the facility under construction at University of Illinois at Urbana-Champaign. The latter is being built to house the multi-petaflop “Blue Waters” supercomputer in 2011. Both datacenters will employ chilled water to be routed directly into the into the computer housing — a much more efficient cooling method than forced air. State-of-the art cooling for petascale machines is now a given, but even industrial HPC datacenters are going green.

This includes the CFD centers being built for Formula One racecar designs. While racecars aren’t exactly known for their fuel efficiency, there are plenty of opportunities to save energy when developing them. Most serious F1 teams now use high performance computers to help design these cutting-edge autos, so choosing the right HPC system and housing it in a well-designed facility can go a long way in minimizing environmental impact.

At SC08 this week, Appro announced it had completed the final deployment of 38 teraflop Xtreme-X supercomputer for the ING Renault F1 Team. The new system embodies pretty much the latest generation of cluster technology, with AMD quad-core nodes lashed together with DDR InfiniBand. The Appro machine represents a new level of commitment to HPC by the F1 team at Renault. Its previous machine was a 1.8 teraflop cluster housed in a conventional forced-air computer room. The new system lives in a brand new Computational Aerodynamics Research Centre located in the English countryside, north of Oxford.

The facility was built green — not just in terms of energy efficiency, but also in regards to overall environmental impact. According to Graeme Hackland, the CFD center’s IT manager, they were committed to operating an environmentally responsible facility from the start. And lessons learned from their previous computing facility led them to develop a much more energy-efficient plan.

Since the facility was built in the countryside, they had to negotiate with local farmers to bring the electric cable across their fields, while also working with Scottish and Southern Energy to get the energy onsite. “The cost of upgrading energy on this site is going to be huge, so the more we can do to reduce waste, the better it is,” explained Hackland.

The whole structure, which includes the offices and the computer room, was built underground. Undoubtedly, this was more expensive to build than an above-ground structure, but it was still just one-fourth the cost of building a new wind tunnel, even taking into account the cost of the computer hardware. The unconventional design also presented another immediate advantage. The underground nature of the building meant they had no planning restrictions. The request for the new structure passed on its initial application. In the UK, where land is especially precious, there are many more land use restrictions than the US, so getting past the local planning commission is a big deal.

The other nice attribute of an underground facility is an evenly cool temperature. Once you get into the subsoil, the temperature varies very little from season to season, since the soil acts as an enormous thermal buffer. In the middle of England, the temperature below ground is about 10 degrees Celsius (50 degrees Fahrenheit). While this may be a bit chilly for humans, its pretty much perfect for sweaty supercomputers.

Of course you can’t rely on the ambient temperature of the room to cool a multi-teraflop cluster, even at 50 degrees Fahrenheit. The Appro machine is water cooled, using APC’s InfraStruXure solution, which allows them just to cool the hot aisle instead of the whole room. No forced air is used at all, saving even more energy. Furthermore, the CFD center operators have plans to recycle some of the waste heat to be used in the rest of the facility.

Presently the CFD center is using about 40 percent of its allotted power, so they have some room for further expansion. They’re also counting on increases in performance per watt as new processors and systems are rolled out. Since the size of the datacenter is static, computational density is also important. Here again, they’re counting on Moore’s Law and clever system engineers to keep shrinking computers.

So is the Appro cluster performing as expected in its new digs? It’s probably too soon to tell. The Renault engineers have only had access to the machine for production work since late summer. They’ve already used the system for some design mods for two of the races for this year’s R28 F1 racecar, but the 2008 circuit is coming to a close. Most of the CFD design work is now being applied toward next year’s R29. The first physical iteration of that car is expected before Christmas.

Wayne Glanfield, the CFD Analysis project leader, says with the larger system, they’re able to run more simulations concurrently, vastly improving turnaround time for design explorations. They’re also able to run much more refined simulations than they could with the 1.8 teraflop machine. On the old system only 10 percent of the aerodynamic design was done on the cluster, the remainder was accomplished with physical modeling in the wind tunnel. With the new system they’re aiming for a 50-50 split. “We’re currently running about three times the size of the model we were previously running,” said Glanfield. “Our option was to build a second wind tunnel, or to do this — to go for CFD in a really big way.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire