Computed Tomography Software Taps Into NVIDIA GPUs

By John West

November 26, 2008

The growing adoption of high performance computing on small scale clusters by companies from all segments of the economy is driven by the same forces that led HPC to become an integral part of the fabric of science and engineering decades earlier: HPC helps users get things done they just couldn’t do before.

In science and engineering that has meant test flying new aircraft designs years before a prototype could have been built in a traditional physical testing workflow, or rationally searching for new therapeutic compounds based on specific desirable biological properties rather than hit and miss experimentation. These advances have created real gains in the standard of living for most of the people on this planet. This is scientific computing in the large, and the impacts are culture shifting. But although the scale of the computation might be smaller, the shift that adoption of today’s HPC technologies is causing for businesses and their customers is nonetheless transformative.

I recently talked with Julien Noel, the CT (computed tomography) Product Manager at North Star Imaging in chilly Rogers, Minnesota. North Star Imaging (NSI) specializes in industrial X-ray for nondestructive testing and analysis. They have seen firsthand how the adoption of HPC – in the form of expanded computational power from NVIDIA’s GPUs and their CUDA API – can transform a business and create new value for them and for their customers.

HPCwire: What does North Star do for its customers?

Noel: Our 2D digital X-ray systems are often used throughout the manufacturing process for product quality control and manual or automated approval/rejection applications. Our 3D CT systems have typically been used for research and development, failure analysis, reverse engineering and other similar tasks.

Our products and services are geared toward anyone who needs to inspect an object internally and/or externally without destroying it. We are involved with industries such as aerospace, medical device, electronics, automotive, museums and many more, and have had the opportunity to work with companies such as Boeing, Bell Helicopter, Lockheed Martin, NASA, US Army, Medtronic, Kawasaki and the list goes on.

HPCwire: What is the problem you are solving with HPC — in this case NVIDIA’s GPUs?

Noel: Computed tomography involves complex algorithms for 3D reconstruction. Basically, the industrial CT system takes several 2D digital X-ray images and reconstructs them into a 3D volume made of voxels or volume elements. This process uses a filtered back-projection algorithm called the Feldkamp Algorithm.

Due to the improvement of digital X-ray technology, industrial CT systems are able to take more X-ray projections than ever before –from 720 to 3,000– plus each individual image is becoming appreciably larger. Single images now reach 3 to 10 megapixels and have a bit depth usually around 14 to 16 bits. Overall, CT software manipulates massive datasets, as well as creates and outputs multi-billion voxel-sized reconstructions.

In order to process the data and create the reconstruction, the CT software requires a high-end computer with significant computation capability. To date, the standard has been either a multi-core processor system or a computer farm, which in turn leads to expensive hardware and a limit in reconstruction speed. Basically, the CT reconstruction speed is linear with the number of processors — that is, 8 cores equals 8 times faster.

To combat this issue, NSI developed a new way to perform reconstruction using GPU technology. GPU reconstruction accelerates the process significantly more than traditional CPU systems and also helps reduce hardware costs. GPU technology is the future in regard to computation limits and is very strategic to NSI’s future developments as well.

Our GPU-based CT software additionally includes a 3D rendering tool used to display the results and manipulate the 3D CT volume in real time. NVIDIA graphics cards are also used to optimize the rendering quality and speed.

HPCwire: Why NVIDIA and CUDA?

Noel: Historically, we used NVIDIA graphic cards for the 3D rendering module of our CT software. For our CT reconstruction development, the CUDA interface was so easy to use and so powerful that our team naturally focused on NVIDIA technology, with computation on the Tesla C1060 Computing Processor. Moreover, the NVIDIA staff has been very reactive and helpful in providing our team with technical solutions and graphics cards for evaluation and development.

HPCwire: What improvements have your customers seen, and how has that made a difference?

Noel: Through the use of our new CT software with GPU reconstruction technology, our data transformations are completed significantly faster than they had been. With our efX-CT software, speeds are between 5 and 40 times faster than our CPU version using processors, and up to 100 times faster than any other CT software, depending on the number of projections.

From a customer’s perspective, this new capability is extremely valuable as it is now possible to run considerably more CT scans per day than ever before. Also, it allows the flexibility and time to try multiple reconstruction settings to fine tune the scan quality.

Recently, a customer explained that their productivity has dramatically increased due to their reconstruction times diminishing by a factor of 50 over machines built just a couple of years ago. They further explained their data is now typically available in less than two minutes instead of hours and the way they utilize computed tomography has changed dramatically.

HPCwire: What level of effort was required of North Star to take advantage of NVIDIA’s GPUs with CUDA?

Noel: North Star Imaging’s development team has been very efficient in integrating the GPU reconstruction module in efX-CT. The CUDA programming interface is quite straightforward and very stable. The code is easy to get into and its flexibility and capability makes it possible to have something working pretty quickly. More development effort was needed to optimize speed, but overall, CUDA opens up great development perspectives.

HPCwire: Now that you’ve been through this project, do you see additional opportunities in other products or areas of your business?

Noel: The GPU capabilities using NVIDIA’s supercomputer systems have been a great improvement to our efX-CT software and today, most of NSI’s CT system customers are using it. Automatic CT systems with fast GPU reconstruction are currently being developed for inline CT inspection and 3D metrology. Also, we are working on more 3D rendering capabilities for real-time and interactive inspection using NVIDIA products as well as fast data filtering for reconstruction quality improvement.

New NVIDIA products with more cores and enhanced memory will definitely bring our software, and in general our CT business, to a whole new level. The way we see it, 3D CT empowered with HPC technologies such as NVIDIA’s GPUS is definitely the future of industrial X-ray.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Quantinuum Reports 99.9% 2-Qubit Gate Fidelity, Caps Eventful 2 Months

April 16, 2024

March and April have been good months for Quantinuum, which today released a blog announcing the ion trap quantum computer specialist has achieved a 99.9% (three nines) two-qubit gate fidelity on its H1 system. The lates Read more…

Mystery Solved: Intel’s Former HPC Chief Now Running Software Engineering Group 

April 15, 2024

Last year, Jeff McVeigh, Intel's readily available leader of the high-performance computing group, suddenly went silent, with no interviews granted or appearances at press conferences.  It led to questions -- what's Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Institute for Human-Centered AI (HAI) put out a yearly report to t Read more…

Crossing the Quantum Threshold: The Path to 10,000 Qubits

April 15, 2024

Editor’s Note: Why do qubit count and quality matter? What’s the difference between physical qubits and logical qubits? Quantum computer vendors toss these terms and numbers around as indicators of the strengths of t Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips are available off the shelf, a concern raised at many recent Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announced its second fund targeting €200 million. The very idea th Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Computational Chemistry Needs To Be Sustainable, Too

April 8, 2024

A diverse group of computational chemists is encouraging the research community to embrace a sustainable software ecosystem. That's the message behind a recent Read more…

Hyperion Research: Eleven HPC Predictions for 2024

April 4, 2024

HPCwire is happy to announce a new series with Hyperion Research  - a fact-based market research firm focusing on the HPC market. In addition to providing mark Read more…

Google Making Major Changes in AI Operations to Pull in Cash from Gemini

April 4, 2024

Over the last week, Google has made some under-the-radar changes, including appointing a new leader for AI development, which suggests the company is taking its Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

Leading Solution Providers

Contributors

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire