Since 1986 - Covering the Fastest Computers in the World and the People Who Run Them

Language Flags
November 27, 2008

The Undervalued Tech Worker

Michael Feldman

In our supposedly tech-driven economy, it’s common to hear about computer professionals who have lost their jobs and are unable to find new work in their field. And this was occurring even before the recession. Is the IT industry really that much at odds with its own labor market? Surprisingly, yes.

In a recent InfoWorld advice column hosted by Bob Lewis, a reader talks about an increasingly hostile tech labor marketplace — not only for workers with “legacy” skill sets, but even for those with more recent experience:

[I]t’s not just the COBOL and Fortran programmers, the OS/360 and SCOPE dinosaurs. It’s also the software architects; data-base architects; system and network administrators; PHP, Python, Ruby on Rails, and Objective-C software engineers; and heavy metal engineers who were presenting papers at national and international conferences one day, and pariah the next.

The reader follows up with a familiar observation about the industry’s indifference to providing employment continuity for the workforce:

The industry [executives have] made it clear. [They are] not interested in re-training the current workforce, which is likely adequate for its needs. No, it wants fresh bodies, preferably young or beholden ones willing to accept entry-level wages for long hours and who are either burdened with few family obligations or willing to pass them over… for the most part, companies are unwilling to re-train experienced programmers to fill available slots…

I’ve written about this on a few occasions, myself, in the context of the H-1B visa program for non-U.S. workers. But something else struck me when I read Lewis’ response:

Since I try to avoid recommending solutions that require legislation, and also try to avoid moralizing in my writing, I recommend courses of action based on this being how the world works right now. People are products in the employment marketplace. If someone can’t find a job, that means for one reason or another that person isn’t a competitive product. The problem might be marketing, packaging, pricing, or a perceived lack of quality. Whatever it is, this is no different from any other marketplace — it’s up to the seller to package, price and market a product people want to buy.

Lewis says he’s not unsympathetic to the techie’s plight; he’s just trying to be honest. And he makes a good a point.

But casting people as products is not only demoralizing, it’s wrong-headed, and it reflects some unfortunate attitudes in the IT community. Specifically, the conventional wisdom is that maximizing ROI takes precedence over maximizing innovation. While that philosophy may work in a more mature industry that isn’t subject to a lot of technological turnover, like say bubble gum manufacturing, in the computing business it’s just short-sighted.

Since tech workers are the ones that design hardware, write software, and provide services, under-investing in them has some regrettable effects. The most visible example of this is the permanent “software crisis,” which is currently playing out in the industry’s attempt to apply parallel programming to the new raft of multicore and multiprocessor platforms. Moore’s Law continues to double raw processing power every 18 months or so, but only a fraction of that is realized at the application level. But wasting cheap CPU cycles seems to make more sense than applying more human ingenuity to the problem.

To be fair, firms like Intel and Microsoft, along with help from the government, are investing a ton of money in parallel programming R&D, but most companies are willing to let this be somebody else’s problem. The answer for the industry is going to require the adoption of new software platforms and training (or retraining) workers. And that’s going to filter down to everyone.

The relocation of computing into the cloud is another challenge that’s going to require a lot of new software development, infrastructure buildout, and a whole new industry to service it. Hardware is the easy part. It’s the extra labor that’s going to be the bottleneck. If the IT community convinces itself and its customers that computing will be essentially free once it moves into the cloud, there will be little incentive to invest in human resources to make it happen.

I’m not suggesting that simply retraining old techies is going to be a magic bullet. But there has to be some realization that the industry cannot rely solely on cheap processors, “free” software, and disposable IT workers to create innovation. Ultimately, IT is a labor-intensive industry. The purpose of computer systems is not to eliminate jobs, it’s to create value and increase productivity.

At the Supercomputing Conference and Expo last week, there was a panel discussion on disruptive technologies for exascale systems. It was revealing that the four technologies highlighted were all hardware-focused: flash storage, photonic communications, 3D chip stacking, and quantum computing. It’s easy to become seduced by these inventions. Once they’re designed and implemented, they can be mass-produced, with little human intervention. As expensive as semiconductor fabs are, they can work 24/7 and don’t require health insurance and retirement benefits.

But clever software can make even great hardware humble. D-Wave CTO Geordie Rose, the panel’s quantum computing advocate, argued that new algorithms can have a much bigger payoff than more powerful silicon. He noted that using Pollard’s rho algorithm from 1977, it would take 12 years to factor a 90-digit number on a modern-day 400 teraflop Blue Gene supercomputer. But using the newer quadratic seive algorithm, it would take just 3 years to perform the same operation on a 1977 Apple II computer. When you consider the multi-million dollar investment that went into the Blue Gene supercomputer compared to the probable investment that went into developing the new algorithm, you can get some sense of the industry’s misplaced priorities.