Up Against the Memory Wall

By Michael Feldman

December 11, 2008

Between Intel, Microsoft and a host of smaller firms, there’s been some hopeful progress on software for multicore processors. But even if we manage to develop multicore-smart apps, we have to remind ourselves that the memory wall looms ahead. Despite the stall in CPU clock speeds, the proliferation of cores is continuing to widen the gap between microprocessor performance and memory performance.

The problem is not new, certainly not to old-time techies. The classic missive on the memory wall (PDF) was written in 1994 by researchers Wulf and McKee at the University of Virginia. They concluded that we were headed for disaster in the near future — in 10 years or so. Fortunately, they didn’t take into account that cache memory would grow in both size (KB to MB) and sophistication (three levels, prefetching, etc.). Also, integrated memory controllers would become the norm, helping to improve DRAM access.

But the fundamental hardware realities remain. The bandwidth and latency of main memory (static DRAM) have not kept pace with CPU performance. Currently, processor caches provide access to data with latencies of around one or two nanoseconds, while DRAM latencies are roughly 100 times as large. Bandwidth, likewise, is reduced as you move from cache to main memory. Eventually an application generates a cache miss and the processor stalls, twiddling its bits for a 100 cycles or more until the data is retrieved from (or sent to) main memory. Even an L3 cache access costs tens of processor cycles.

For HPC, the memory wall is bigger and closer than it is for other computing domains. Data-hungry, compute-intensive applications place big demands on the memory subsystem. A recent article in IEEE Spectrum spotlights a study at Sandia that simulated HPC application performance with increasing core counts:

With no other way to improve the performance of processors further, chip makers have staked their future on putting more and more processor cores on the same chip. Engineers at Sandia National Laboratories, in New Mexico, have simulated future high-performance computers containing the 8-core, 16-core, and 32-core microprocessors that chip makers say are the future of the industry. The results are distressing.

Indeed. In a graph that looks somewhat reminiscent of this year’s NASDAQ stock chart, the Sandia simulation predicts that for certain types of HPC applications, performance rises modestly from two to four cores, and even more modestly from four to eight. But after eight cores, performance actually drops off, and goes into free-fall beyond 16 cores.

The implied knock on multicore seems somewhat misplaced. If the simulation were performed on a single-core processor with increasing clock speeds, presumably you would see the performance increase in a similar manner as you doubled and quadrupled the clock frequencies, with the memory bottleneck exerting its braking effect. At some point though, the performance would just level off as the CPU hits the memory wall.

Theoretically splitting up computation across multiple cores should help mitigate the memory wall effect since there’s a decent chance that some cores will still be happily running in cache, while others are stuck waiting for data from main memory. But the Sandia study predicts decreasing performance above eight cores, so something analogous to Fred’s Brooke’s “Mythical Man-Month” must be going on. In that model, adding additional resources slows down the process, mainly because of additional overhead in communication. It’s Moore’s Law versus Brooke’s Law, with the latter trumping the former.

The category of HPC applications that the Sandia engineers were studying is what they call “informatics” — a catch-all they use to describe compute-intensive codes that are searching for patterns in very large databases. Applications used to help with natural disaster management and counterterrorism fall into this category. Unlike the more predictable data access patterns of HPC codes that model a physical system, like a hurricane or an oil reservoir, informatics apps tend toward irregular access. Spatial and temporal locality are lower in these types of codes and that puts a strain on the whole memory hierarchy.

The extent to which memory bandwidth and latency is limiting HPC performance overall is largely unknown, although anecdotal evidence suggests a growing problem. At SC08 last month, IDC reported that users are hitting the wall with multicore. If that’s a generalized situation, it’s going to get worse fast.

According to an April 2008 HPC User Site Census report by Tabor Research, the installed base of HPC systems is only about midway into its transition from single-core to multicore, with single-core CPU chips currently making up more than half of total processors. That was eight months ago, so we already may be past the tipping point. The report concludes the transition to multicore should be mostly completed within the next few years. That will happen if for no other reason than you won’t be able to buy single-core processors. Intel’s last one-core server chip was released over three years ago.

And while the report states that memory per core is trending upward — from 1.36 GB/core in pre-2005 systems to 2.96 GB/core in systems deployed in the first quarter 2008 — the memory wall is not a capacity issue. In some cases more memory will translate into more aggregate bandwidth, but adding additional DRAM is usually done to avoid the even more daunting I/O wall at the disk.

It would be an interesting exercise to track cache size per core in deployed HPC systems, since larger caches have been the biggest defense against the memory wall. Cache has been growing exponentially to try and keep up with the multiplying cores. The latest Shanghai quad-core Opteron chips from AMD have 6 MB of L3 cache, as well as 2 MB of L2 and 256 KB of L1. The corresponding Harpertown processor from Intel has up to 12 MB of L2 and 128 KB of L1 (but no L3). The more cache-heavy four- and six-core Dunningtons have 6 MB of L2 and up to 16 MB of L3, along with 96 KB of L1 per core.

In the long-term, the scaling of the memory wall may take place once 3D memory devices and/or optical interconnects are commercialized. Failing that, expect to see much larger and smarter cache hierarchies.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

Nvidia Appoints Andy Grant as EMEA Director of Supercomputing, Higher Education, and AI

March 22, 2024

Nvidia recently appointed Andy Grant as Director, Supercomputing, Higher Education, and AI for Europe, the Middle East, and Africa (EMEA). With over 25 years of high-performance computing (HPC) experience, Grant brings a Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Houston We Have a Solution: Addressing the HPC and Tech Talent Gap

March 15, 2024

Generations of Houstonian teachers, counselors, and parents have either worked in the aerospace industry or know people who do - the prospect of entering the fi Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire