Up Against the Memory Wall

By Michael Feldman

December 11, 2008

Between Intel, Microsoft and a host of smaller firms, there’s been some hopeful progress on software for multicore processors. But even if we manage to develop multicore-smart apps, we have to remind ourselves that the memory wall looms ahead. Despite the stall in CPU clock speeds, the proliferation of cores is continuing to widen the gap between microprocessor performance and memory performance.

The problem is not new, certainly not to old-time techies. The classic missive on the memory wall (PDF) was written in 1994 by researchers Wulf and McKee at the University of Virginia. They concluded that we were headed for disaster in the near future — in 10 years or so. Fortunately, they didn’t take into account that cache memory would grow in both size (KB to MB) and sophistication (three levels, prefetching, etc.). Also, integrated memory controllers would become the norm, helping to improve DRAM access.

But the fundamental hardware realities remain. The bandwidth and latency of main memory (static DRAM) have not kept pace with CPU performance. Currently, processor caches provide access to data with latencies of around one or two nanoseconds, while DRAM latencies are roughly 100 times as large. Bandwidth, likewise, is reduced as you move from cache to main memory. Eventually an application generates a cache miss and the processor stalls, twiddling its bits for a 100 cycles or more until the data is retrieved from (or sent to) main memory. Even an L3 cache access costs tens of processor cycles.

For HPC, the memory wall is bigger and closer than it is for other computing domains. Data-hungry, compute-intensive applications place big demands on the memory subsystem. A recent article in IEEE Spectrum spotlights a study at Sandia that simulated HPC application performance with increasing core counts:

With no other way to improve the performance of processors further, chip makers have staked their future on putting more and more processor cores on the same chip. Engineers at Sandia National Laboratories, in New Mexico, have simulated future high-performance computers containing the 8-core, 16-core, and 32-core microprocessors that chip makers say are the future of the industry. The results are distressing.

Indeed. In a graph that looks somewhat reminiscent of this year’s NASDAQ stock chart, the Sandia simulation predicts that for certain types of HPC applications, performance rises modestly from two to four cores, and even more modestly from four to eight. But after eight cores, performance actually drops off, and goes into free-fall beyond 16 cores.

The implied knock on multicore seems somewhat misplaced. If the simulation were performed on a single-core processor with increasing clock speeds, presumably you would see the performance increase in a similar manner as you doubled and quadrupled the clock frequencies, with the memory bottleneck exerting its braking effect. At some point though, the performance would just level off as the CPU hits the memory wall.

Theoretically splitting up computation across multiple cores should help mitigate the memory wall effect since there’s a decent chance that some cores will still be happily running in cache, while others are stuck waiting for data from main memory. But the Sandia study predicts decreasing performance above eight cores, so something analogous to Fred’s Brooke’s “Mythical Man-Month” must be going on. In that model, adding additional resources slows down the process, mainly because of additional overhead in communication. It’s Moore’s Law versus Brooke’s Law, with the latter trumping the former.

The category of HPC applications that the Sandia engineers were studying is what they call “informatics” — a catch-all they use to describe compute-intensive codes that are searching for patterns in very large databases. Applications used to help with natural disaster management and counterterrorism fall into this category. Unlike the more predictable data access patterns of HPC codes that model a physical system, like a hurricane or an oil reservoir, informatics apps tend toward irregular access. Spatial and temporal locality are lower in these types of codes and that puts a strain on the whole memory hierarchy.

The extent to which memory bandwidth and latency is limiting HPC performance overall is largely unknown, although anecdotal evidence suggests a growing problem. At SC08 last month, IDC reported that users are hitting the wall with multicore. If that’s a generalized situation, it’s going to get worse fast.

According to an April 2008 HPC User Site Census report by Tabor Research, the installed base of HPC systems is only about midway into its transition from single-core to multicore, with single-core CPU chips currently making up more than half of total processors. That was eight months ago, so we already may be past the tipping point. The report concludes the transition to multicore should be mostly completed within the next few years. That will happen if for no other reason than you won’t be able to buy single-core processors. Intel’s last one-core server chip was released over three years ago.

And while the report states that memory per core is trending upward — from 1.36 GB/core in pre-2005 systems to 2.96 GB/core in systems deployed in the first quarter 2008 — the memory wall is not a capacity issue. In some cases more memory will translate into more aggregate bandwidth, but adding additional DRAM is usually done to avoid the even more daunting I/O wall at the disk.

It would be an interesting exercise to track cache size per core in deployed HPC systems, since larger caches have been the biggest defense against the memory wall. Cache has been growing exponentially to try and keep up with the multiplying cores. The latest Shanghai quad-core Opteron chips from AMD have 6 MB of L3 cache, as well as 2 MB of L2 and 256 KB of L1. The corresponding Harpertown processor from Intel has up to 12 MB of L2 and 128 KB of L1 (but no L3). The more cache-heavy four- and six-core Dunningtons have 6 MB of L2 and up to 16 MB of L3, along with 96 KB of L1 per core.

In the long-term, the scaling of the memory wall may take place once 3D memory devices and/or optical interconnects are commercialized. Failing that, expect to see much larger and smarter cache hierarchies.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pressing needs and hurdles to widespread AI adoption. The sudde Read more…

Quantinuum Reports 99.9% 2-Qubit Gate Fidelity, Caps Eventful 2 Months

April 16, 2024

March and April have been good months for Quantinuum, which today released a blog announcing the ion trap quantum computer specialist has achieved a 99.9% (three nines) two-qubit gate fidelity on its H1 system. The lates Read more…

Mystery Solved: Intel’s Former HPC Chief Now Running Software Engineering Group 

April 15, 2024

Last year, Jeff McVeigh, Intel's readily available leader of the high-performance computing group, suddenly went silent, with no interviews granted or appearances at press conferences.  It led to questions -- what's Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Institute for Human-Centered AI (HAI) put out a yearly report to t Read more…

Crossing the Quantum Threshold: The Path to 10,000 Qubits

April 15, 2024

Editor’s Note: Why do qubit count and quality matter? What’s the difference between physical qubits and logical qubits? Quantum computer vendors toss these terms and numbers around as indicators of the strengths of t Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips are available off the shelf, a concern raised at many recent Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Computational Chemistry Needs To Be Sustainable, Too

April 8, 2024

A diverse group of computational chemists is encouraging the research community to embrace a sustainable software ecosystem. That's the message behind a recent Read more…

Hyperion Research: Eleven HPC Predictions for 2024

April 4, 2024

HPCwire is happy to announce a new series with Hyperion Research  - a fact-based market research firm focusing on the HPC market. In addition to providing mark Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

Leading Solution Providers

Contributors

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire