Will Multicore Kill the x86?

By Michael Feldman

January 8, 2009

The hardware and software challenges of multicore/manycore CPUs have been flogged in this publication for a number of years. The assumption was that geek ingenuity would eventually power through the roadblocks. The memory wall problem would yield to innovative hardware architectures, and new software development approaches would make multithreaded computing practical enough for widespread use. But what if that doesn’t happen?

There’s a good article in the January/February 2009 issue of Technology Review that outlines multicore computing challenges and talks about some of the software strategies being pursued by Intel, Microsoft and others in the industry. But the most interesting part of the article is toward the end, where the author allows for the possibility that the whole multicore paradigm may just fall apart:

So what’s the downside if multicore computing fails? What is the likely impact on our culture if we take a technical zig that should have been a zag and suddenly aren’t capable of using all 64 processor cores in our future notebook computers?

For a positive spin on this outcome, the author quotes Apple Computer co-founder Steve Wozniak, who apparently believes the end of Moore’s Law-driven microprocessor evolution would be a good thing:

“I can’t wait!” says Steve Wozniak, the inventor of the Apple II. “The repeal of Moore’s Law would create a renaissance for software development,” he claims. “Only then will we finally be able to create software that will run on a stable and enduring platform.”

Of course, the other way to create a stable platform is to build scalability into the software model so that the number of cores is transparent to the application. The idea is that jumping from 8 to 64 cores automatically gives an application better performance, without recoding or even recompilation. That’s the thrust behind the work Intel, Microsoft and university researchers are doing today.

Some industry luminaries, like Professor David May at Bristol University, thinks replicating cores using legacy architectures is the real problem, given that conventional CPUs like the x86 were never designed for parallel processing. He elaborated his position in October in an Electronics Weekly article on the pitfalls of multicore programming:

Current attempts to use multi-cores in the mainstream computing world, like the efforts made by Intel and Microsoft with a bunch of US universities, may be doomed. “I think they (Intel and Microsoft) are trying to solve a different problem,” said May, “they’re taking all the PC applications and putting them on multi-cores. That’s a very different problem and, in my view, they won’t be very successful. Taking sequential programmes and trying to make them run in parallel is virtually impossible.”

May is also the CTO of XMOS Semiconductor, a company that has developed a multicore architecture that uses “software defined silicon” to combine some of the best attributes of ASICs and FPGAs. The resulting processor is aimed at the consumer electronics market.

Perhaps along the same lines is Creative Technology’s just-announced Zii processor, which also claims to use software defined silicon in its newly minted 10 gigaflops chip. Like the XMOS silicon, Zii is targeted for the consumer space, although the Web site video hyperventilates about building a petaflop supercomputer with a mere six racks of Zii processors. Maybe if they were IBM, they’d actually attempt it.

In any case, for most kinds of client-side computing, the x86 architecture may truly be a dead end. Since the Internet became the center of the computing universe, PCs have been morphing from general-purpose computing appliances to thin clients. This will continue as more and more computing is moved into the cloud. As clients get ever thinner, the main computing load is data transcoding, which generally can be accomplished with greater efficiency using more specialized silicon like GPUs, FPGAs, DSPs and maybe these new-fangled software defined silicon gadgets. In that sense, PCs are becoming more like handheld devices.

Where would that leave server-side computing, especially HPC? For throughput and capacity computing, CPU-based architectures still offer a reasonably-natural computing architecture. But for many HPC applications, and for capability supercomputing in particular, the inherently parallel architectures of GPUs, Cell processors and FPGAs offer a better fit (although a CPU companion is still needed at this point). The high level of interest with GPGPUs, Cell processors and FPGAs is one indication that supercomputing might be turning away from conventional CPUs.

Economics will dictate that mainstream HPC will continue to rely on the same processor architectures used in consumer electronics. But one day, those chips may be something other than x86.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire